

Deliverable 3.3

Open Network App Repository

Version 1.0 - Date 31/12/2022

This project has received funding from the European

Union’s Horizon 2020 research and innovation

programme under grant agreement n° 101016912

Disclaimer This document reflects the Smart5Grid consortium view and the European Commission (or the 5G-Public

Private Partnership) is not responsible for any use that may be made of the information it contains

D3.3 – Open Network App Repository V1.0

 G.A. 101016912 Page 2|85

D3.3 – Open Network App Repository

Document Information

Programme
Horizon 2020 Framework Programme – Information and

Communication Technologies

Project acronym Smart5Grid

Grant agreement number 101016912

Number of the Deliverable D3.3

WP/Task related WP3

Type (distribution level) PU Public

Date of delivery 31-12-2022

Status and Version Version 1.0

Number of pages 85 pages

Document Responsible Yanos Angelopoulos AXON

Author(s)

Angelos Antonopoulos – NBC

Antonello Corsi – ENG

Daniela Patrício – UW

George Kontopoulos – 8BELLS

Lenos Hadjidemetriou – UCY

Nicola Cadenelli – NBC

Nicola Sergnese – ENG

Paula Encinar – ATOS

Pedro Teixeira – UW

D3.3 – Open Network App Repository V1.0

 G.A. 101016912 Page 3|85

Sonia Castro – ATOS

Yanos Angelopoulos – AXON

Reviewers
Giampaolo Fiorentino – ENG

Irina Ciornei – UCY

D3.3 – Open Network App Repository V1.0

 G.A. 101016912 Page 4|85

Revision History

Version Date Author/Reviewer Notes

0.1 22/08/2022 Yanos Angelopoulos – AXON Initial table of content

0.2 20/11/2022 George Kontopoulos – 8BELLS

Nicola Cadenelli – NBC

Yanos Angelopoulos – AXON

First draft

0.3 28/11/2022 Angelos Antonopoulos – NBC

Daniela Patrício – UW

George Kontopoulos – 8BELLS

Lenos Hadjidemetriou – UCY

Nicola Cadenelli – NBC

Nicola Sergnese – ENG

Paula Encinar – ATOS

Pedro Teixeira – UW

Sonia Castro – ATOS

Yanos Angelopoulos – AXON

Most partner contributions submitted.

0.4 05/11/2022 Antonello Corsi – ENG

Paula Encinar – ATOS

Yanos Angelopoulos – AXON

Complete draft with all contributions.

Some content was restructured and text

was formatted.

0.5 19/12/2022 Giampaolo Fiorentino – ENG

Irina Ciornei – UCY

Revised Version

1.0 31/12/2022 Yanos Angelopoulos – AXON Submitted Version

D3.3 – Open Network App Repository V1.0

 G.A. 101016912 Page 5|85

Executive summary

Smart5Grid builds an open-access platform that accommodates experimenters to access, develop in a

collaborative manner, share and test Network Apps on simulated 5G and energy vertical production

environments. One of the prominent components of the Smart5Grid platform is the Open Service

Repository (OSR). This deliverable describes in detail the design, specifications, and implementation of

the Smart5Grid platform OSR and the User Interface. The OSR is the open Network App repository that

stores Network Apps and all their subcomponents Network Services (NSs), Virtual Network Functions

(VNFs), Virtual Deployment Units (VDUs), and images.

This deliverable reports the results produced from the work done in Task 3.2 “Open Service Repository”

with the addition of the development of the Platform User Interface. By the time of the submission of this

deliverable the OSR service (T3.2) is considered complete. The report includes an overview of related

software services with similar goals and their functionality, existing in the market or being developed by

ICT-41 projects. The OSR strengths and functionality are presented in detail. In order to better

understand the main object whose information is stored in the OSR, there is a dedicated section on the

Network App information model (IM). While the OSR can support the evolution of the information

included in the Network App IM, it follows its main structure and defines a compatible data model. For

the complete understanding of the OSR’s internal and external communications all the methods per

component interface provided by the OSR are explained. Finally, we explain all technological decisions,

implementation, deployment, testing, and CI/CD methods performed in the process of creating the OSR

and the Platform User Interface.

D3.3 – Open Network App Repository V1.0

 G.A. 101016912 Page 6|85

Table of contents

Revision History ... 4

Executive summary .. 5

Table of contents .. 6

List of figures .. 8

List of tables .. 10

1. Introduction ... 11

1.1. Scope of the document ..11

1.2. Document Structure ...11

1.2.1. Notations, abbreviations and acronyms .. 11

1.3. Target Audience ... 13

2. Concepts and Related Work ... 14

2.1. Service Repository Concepts .. 14

2.2. Related Products .. 14

2.2.1. Network App repositories ICT-41 Projects .. 15

3. OSR Specifications ... 16

3.1. Relation with Overall Smart5Grid requirements ... 16

3.1.1. Network App Descriptor Template ... 16

3.2. OSR Data Model ... 22

4. Architectural Components and Interfaces .. 25

4.1. OSR Authentication and Authorization Service ... 25

4.2. OSR Network App Catalogue ... 26

4.2.1. OSR Code Versioning Service ... 27

4.2.2. OSR Image Registry.. 29

4.2.3. OSR Event Logging Service .. 30

4.3. External Component Interfaces ... 31

4.3.1. V&V Interface .. 31

4.3.2. NAC Interface .. 31

5. Technological Assessment and Implementation .. 32

5.1. Technological Assessment ... 32

5.2. Technological Decisions and Configuration .. 36

5.2.1. OSR A&A ... 36

5.2.2. OSR Network App Catalogue .. 39

D3.3 – Open Network App Repository V1.0

 G.A. 101016912 Page 7|85

5.2.3. OSR Code Versioning Service ... 40

5.2.4. OSR Image Registry... 41

5.2.5. OSR Event Logging Service .. 42

5.2.6. Platform User Interface .. 43

5.2.7. External Interfaces Integration .. 51

5.3. Laboratory Deployment .. 53

5.4. CI/CD Pipelines .. 54

5.4.1. Development Workflow .. 54

5.4.2. Deployment Workflow ... 55

5.5. Testing ... 56

6. Conclusions and Future Work ... 57

7. References ... 58

8. Appendix A: OSR REST API .. 60

D3.3 – Open Network App Repository V1.0

 G.A. 101016912 Page 8|85

List of figures

Figure 1 Network App Information Model ... 17

Figure 2: OSR internal and provided interfaces .. 25

Figure 3: OSR Event Logging internal interfaces... 30

Figure 4: OpenID Connect Platform UI interactions .. 38

Figure 5: GitLab OSR A&A Single-Sign-On Login ...41

Figure 6: Harbor OSR A&A Single-Sign-On Login ... 42

Figure 7: Platform UI ReactJS Architecture ... 43

Figure 8: Platform UI code directory structure .. 44

Figure 9: Platform UI tree structure ... 45

Figure 10: Platform UI Login View.. 46

Figure 11: Platform UI User Details View .. 47

Figure 12: Platform UI Upload Repo Key Modal .. 47

Figure 13: Platform UI Dashboard View ... 48

Figure 14: Platform UI Sidebar .. 48

Figure 15: Platform UI Network App List View ... 49

Figure 16: Platform UI Network App Details View .. 50

Figure 17: Platform UI Upload Network App Descriptor Modal ... 50

Figure 18: OSR - V&V - NAC workflow ... 51

Figure 19: V&V test job execution ... 52

D3.3 – Open Network App Repository V1.0

 G.A. 101016912 Page 9|85

Figure 20: V&V test result dashboard .. 52

Figure 21: V&V test results in the database .. 53

Figure 22: OSR Development Workflow .. 55

Figure 23: OSR Deployment Workflow .. 56

D3.3 – Open Network App Repository V1.0

 G.A. 101016912 Page 10|85

List of tables

Table 1: Acronyms list ... 13

Table 2 Smart5Grid Network App Information Model .. 22

Table 3: sso - aa interface methods.. 26

Table 4: ncat – aa interface methods ... 26

Table 5: cli – ncat interface methods .. 27

Table 6: ncat – cv interface methods ... 28

Table 7: ncat – ir interface methods ... 29

Table 8: ncat – el interface methods .. 30

Table 9: Most popular programming languages according to the PYPL index (September 2022). [15] 32

Table 10: Comparison of PostgreSQL, SQLite and MySQL [21] .. 35

D3.3 – Open Network App Repository V1.0

 G.A. 101016912 Page 11|85

1. Introduction

1.1. Scope of the document

The scope of this document is to report the work done by the involved partners in Task 3.2 “Open

Service Repository” (OSR). The expected outcomes are the delivery of a tested and fully operational

prototype repository accessible from the 5G and energy infrastructure and publicly available to external

stakeholders. In addition to that, we add detailed information on the Platform User Interface which was

developed in accordance with the OSR’s Access Point Interfaces (APIs) to provide easier access to the

users of the Smart5Grid platform.

1.2. Document Structure

Initially, this document analyses the main concepts and terminology of an open service repository as well

as the current status and progress related to software repositories in Open-Source software

development communities and various implementations from relevant 5G European-funded projects.

The next part of the document analyses the pertinent requirements of the OSR and the way the OSR

conforms and adds value to the Smart5Grid overall architecture. It describes the chosen data model to

represent the required information, and the system use cases covered. This section is essential for the

architecture definition and the implementation of the software. The design is highly modular and

expandable and can be easily enhanced with further improvements (i.e. health monitoring, high

availability, etc). The refined details of the Network App operations and the functional use cases are also

provided. In the next section, we document the purpose and functionality of the OSR through all of its

subcomponents. We describe both the internal and external interfaces provided. The document

continues with a detailed description of the Smart5Grid Platform User Interface (UI) detailing the

architecture, the use cases, and the views provided to the users. In the following sections, we assess the

open-source technologies we considered for the implementation of each subcomponent and we explain

the decisions we took. Moreover, we describe the configuration details of the developed and deployed

software components, and the integration between subcomponents and external interfaces. The

implementation details include the laboratory environment used, at the time of writing this document,

the workflow pipelines followed in our development process, and the testing mechanisms we used to

validate and ensure the functional integrity of our solution. The document concludes with the “User

Guide” on how to efficiently use the OSR and the Smart5Grid Platform UI to perform actions offered by

the platform.

1.2.1. Notations, abbreviations and acronyms

Item Description

5G 5th Generation (of mobile

telecommunication networks)

5G PPP 5G Infrastructure Public Private

D3.3 – Open Network App Repository V1.0

 G.A. 101016912 Page 12|85

 Partnership

A&A Authentication and Authorization

API Application Programming Interface

AWS Amazon Web Services

CI/CD Continuous Integration/Continuous

Deployment

CIAM Customer identity and access

management

CIDR Classless Inter-Domain Routing

CLI Command Line Interface

CNCF Cloud Native Computing Foundation

CNI Container Network Interface

DevOps Development and Operations

dnsmasq DNS masquerade

ELK Elasticsearch Logstash Kibana

ETSI European Telecommunications

Standards Institute

GitOps Git Operations

HDD Hard Disk Drive

HTTPS Hypertext Transfer Protocol Secure

IAM Identity and Access Management

ICT Information and Communication

Technologies

IM Information Model

JSON JavaScript Object Notation

JWT JSON Web Token

K3S Kubernetes (alternative)

K8S Kubernetes

KVM Kernel-based Virtual Machine

MAAS Metal As A Service

MAC Media Access Control

NAC Network App Controller

Network App Network Application

NF Network Function

NFS Network File System

NS Network Service

NSD Network Service Descriptor

OCI Open Container Initiative

OIDC OpenID Connect

OSR Open Service Repository

OSR A&A OSR Authentication and Authorization

OSR CV OSR Code Versioning

D3.3 – Open Network App Repository V1.0

 G.A. 101016912 Page 13|85

OSR EL OSR Event Loggings

OSR NCAT OSR Network App Catalogue

PVC Persistent Volume Claim

PXE Pre-boot Execution Environment

PYPL Popularity of Programming Language

Index

RAID Redundant Array of Independent Disks

RBAC Role Based Access Control

RP Relying Party

SAP Service Access Point

SDK Software Development Kit

SLO Service Level Objective

SME Small and Medium-sized Enterprises

SQL Structured Query Language

SSH Secure Shell

UC Use Case

UI User Interface

UID Unique Identifier

VDU Virtual Deployment Unit

VNF Virtual Network Function

VNFFGD VNF Forwarding Graph Descriptor

VXLAN Virtual Extensible LAN

YANG Yet Another Next Generation

Table 1: Acronyms list

1.3. Target Audience

This document provides a high-level description of the OSR software developed in Smart5Grid, as well as

detailed information of the implementation. In this context, the document is targeted to researchers and

developers that work in similar open repository concepts aiming to facilitate development and

collaboration in a niche industry like the Energy and 5G Telecommunications sector. While the Network

Apps developed in the project’s context are focused on the aforementioned sectors, the OSR could be

useful to an extended set of verticals. Such audience could work on developing applications and services

that will use the OSR’s open APIs to leverage or extend OSR’s functionality.

D3.3 – Open Network App Repository V1.0

 G.A. 101016912 Page 14|85

2. Concepts and Related Work

In this section we provide some background knowledge regarding Service Repository for Containerized

applications, and we motivate why we need a Network App Repository.

2.1. Service Repository Concepts

While Smart5Grid defines Services as containerized software services that get deployed in Kubernetes

clusters, the Cambridge Dictionary defines Repository as “a place where things are stored and can be

found”. Therefore, in this context, a Service Repository is a place where containerized software services

are stored and can be found. Intuitively, a Network App Repository is a place where Network Apps are

stored and can be found.

Repositories, whether of code or services, have become crucial to share knowledge over the Internet to

the entire globe. In fact, nowadays there are many different repositories for Docker images and other

artifacts. However, since Smart5Grid defined its own concept of Network App, it also needed to provide

a Network App repository to store and share such artifacts. In more details, Smart5Grid’s Network App

relies on two artifacts kind: Docker images and Helm Charts

For Containers, to standardize the adoption of just one distribution method, the Open Container

Initiative (OCI) Distribution Specification [1] was defined and adopted by many projects. Ever since, this

OCI distribution method started to be adopted to distribute different kind of artifacts, for instance, Helm

charts. This push for standardization was beneficial and let some registries, likes Harbor [2], store

different kind of artifacts at the same time1. This means that IT departments from all over the world, can

store and share their services using these registries, either public or private. And this is exactly what the

OSR aims to do in the context of Smart5Grid.

2.2. Related Products

Over the years many Docker repositories have emerged. Docker Hub [2] and RedHat Quay [4] container

registry These projects are among the world’s largest repositories of container images. Their repositories

allow you to share container images with a team, customers, or the community. Similarly, Helm charts

repositories like Artifacthub.io [5] and VMware’s Bitnami [6], just to name a few, have also emerged.

Finally, the previously mentioned Harbor “is an open-source registry that secures artifacts with policies

and role-based access control, ensures images are scanned and free from vulnerabilities, and signs images

as trusted. Harbor, a CNCF Graduated project, delivers compliance, performance, and interoperability to

help you consistently and securely manage artifacts across cloud native compute platforms like Kubernetes

1 While a repository is a collection of similar artifacts with the same name but different tags, a registry is a

service that is storing some artifacts. Usually, a registry allows to create many repositories or even create

projects to provide a role base access control (RBAC) rules to control the who and how has access to

each project.

D3.3 – Open Network App Repository V1.0

 G.A. 101016912 Page 15|85

and Docker.” [2] Harbor allows its users to self-host dedicated registry to store Docker containers and

Helm charts. We will see in the next sections how Smart5Grid OSR comprises of a dedicated Harbor

instance.

2.2.1. Network App repositories ICT-41 Projects

In this section, we are going to illustrate the main different ICT-41 projects that have managed to store

and retrieve the Network Apps. We will not go into depth on the technologies used but rather we will do

a high-level overview to illustrate how each project operated and made available these functionalities.

All ICT-41 projects cover different domains/verticals but at the same time share many common aspects

on how to store Network Applications and how they are exploited by third parties experimenters in

providing new applications/services.

5GASP [7] has put in place a Network App Marketplace that provides a public registry of SMEs and their

registered products: reusable Network Apps, Network Function (NF) and Network Service (NS) links to

open-source repositories, and useful documentation that an SME needs to know also to put in place a

certification process. This portal is complemented by a Network App community that supports third

parties in development.

Another interesting approach is the one followed by the project EVOLVED-5G [8]. There the Network

App repository is composed of two separate artifacts. The first one is GitHub on which EVOLVED-5G has

created a template to generate the Network App file structure as part of the Software Development Kit

(SDK) toolchain. In this repository, the developers can share their Network App code. The second

repository, namely the Open Repository is used to store and manage all the Network App images

(binaries) and is an extension to other repositories similar to source code repositories, i.e., GitHub. For

the validation and certification stages, the Repository will be connected to a third component of the

workspace, allowing CI/CD life cycle.

5G IANA [9] has an architecture component named the Network Applications Toolkit, whose goal is to

simplify the design and onboarding of new automotive services from third-party experimenters. Inside

this component, there is a catalogue of available Network Applications that can be used to compose

advanced vertical services.

The VITAL-5G Open Online Repository [10] is one of the core components of the VITAL-5G Platform,

providing the catalogue of the Network Apps developed for the project and giving the opportunity to

third-party experimenters and developers to download and select them for experimentation, as well as

to onboard their own Network Apps to build new vertical services. The main artifacts are 3 different

catalogues that allow respectively to query and onboard Network App packages, Vertical Service

Blueprints, and Descriptors, as well as Experiment Blueprints and Descriptors, together with their

associated VNF packages and NFV Network Service Descriptors.

In 5G-MEDIA HUB [11] there is a Network Apps Repository application that has the main purpose to

enable Network Apps to be onboarded on the underlying 5G testbeds. This allows the users to design,

validate and deploy their Network Apps based on the set of available VNF present in the service

catalogue. The Catalogue Management and Service Ordering features from the underlying 5G testbeds

allow the users to design Network Apps in a "drag and drop" modality where the constituent VNFs can

be dropped onto the canvas and connecting the VNFs to generate the forwarding graphs.

D3.3 – Open Network App Repository V1.0

 G.A. 101016912 Page 16|85

3. OSR Specifications

3.1. Relation with Overall Smart5Grid requirements

The OSR is one of the primary front-facing services of the Smart5Grid platform. Together with the

Platform User Interface, they consist of the main endpoint for the users to access the Smart5Grid

offerings. The OSR provides a repository to store Network Apps and all the sub-components that

compose a Network App. As of the time of writing this document, the definition of the Network App

follows a dual format. One ETSI compliant and another simplified and more flexible for the purposes of

the project. The OSR, also, consists of a toolset to facilitate the Network App development process. It

offers a simplified overlay platform with drivers to the currently most preferred tools in software

development tools. It automates multiple steps of the development process under the context of the

Network App as a project to include all the required information to deploy a complete and complex

service comprised of several different components and the definition of the interactions between them.

Throughout the integration with V&V platform OSR’s users can test their Network Apps on secure

execution environments simulating production conditions in the energy vertical sector.

3.1.1. Network App Descriptor Template

Smart5Grid proposes a Network App that enables developers to build vertical applications with the

necessary components to deliver a service with the access performance requirements needed to meet

the demanding performance constraints that may be requested by applications in the vertical and to

take advantage of the features and performance offered by 5G networks.

In order to define the Network App and each of its features, Smart5Grid defines an Information Model

(IM) of the Network App trying to capture all the necessary details. To create the Network App's IM,

YANG [12] has been used as the data modelling language. This IM defines the structure of the Network

App and lists each of the fields that will compose it, as well as the type of data that each field must

follow.

The IM facilitates the developer the creation of the Network App descriptor, showing all the fields that

compose it as well as which of them are mandatory and which are optional, thus allowing the creation of

a vertical application that covers all the needs. The first version of the Network App IM was introduced in

D2.2 [13] which has been updated and improved according to the needs of the individual UCs as you

can see below::

D3.3 – Open Network App Repository V1.0

 G.A. 101016912 Page 17|85

Figure 1 Network App Information Model

As can be seen in Figure 1, the Network App is composed of interconnected and grouped services and

sub-services. These services expose the service access points (SAPs) that will be referred to in each of the

Network App's endpoints. These endpoints can be of three types depending on their intended use: i) a

Monitoring Endpoint, which is the endpoint in charge of communicating with the Network App

Controller to monitor the metrics defined in the SLO field, ii) an External Endpoint, which makes a

Network App service available externally to interface with a dashboard or APIs, iii) an Access Endpoint,

which defines the access policies with the appropriate performance requirements to access each

function. In addition, there are other fields that are part of the Network App descriptor, such as SLOs

with requirements on the set of metrics exposed by the services, which can be used by the Network App

driver to trigger scaling or migration actions, as well as Security-Group-Rule to define certain traffic rules

or policies expected for that specific type of traffic and communication should be provided.

Each of the items defined in the final IM are described in the following table:

Item Type Content

Network App Object Main Network App container object

Network App.IM_version String Information Model version of the

Network App

Network App.Provider String Provider of the Network App

Network App.Name String Network App Name

Network App.Version String Network App Version

Network App.Description String Description of the functionality of

the Network App

Network App.Service_Format String Format of the Service item. Allowed

values are:

• OSM: in case of using of

packages of services and

sub-services using the OSM

D3.3 – Open Network App Repository V1.0

 G.A. 101016912 Page 18|85

Item Type Content

IM

• HELM: in case the

NearbyComputing Network

App driver is used, thus

referencing the NBC IM

Network App.Services List List of Services type object. The

service format is specified in the

Network App-Service-Format field.

Network App.Monitoring_endpoint Object Monitoring endpoint type object.

Network App.External_endpoints List List of External endpoints type

object.

Network App.Access_endpoints List List of Access endpoints type object.

Only supported for OSM IM

Network App.Internal_Link List of Internal Link type Object. Only

supported for OSM service format

Network App.SLOs List List of SLO type objects that apply to

the Network App

Network App.Security_group_rules List List of Security-group-rule type

objects applicable to the Access

Endpoint. Only supported for OSM

IM

Services Object Service Object

Services.name String Service name

Services.package String Service package name. Two types of

packages are supported:

• OSM service format: NS

package as tar.gz

• HELM service format: Helm-

chart package in tgz format

Services.subservices List List of subservices type object to

reference from the Services.

Services.values String Values of the chart exposed at the

Network App level - Values.yaml will

be overwritten

Services.sap List List of SAPs type Objects

Subservices Object Subservices object.

Subservices.name String Subservice name. Allows two types

of values:

• OSM service format: VNF

reference name

• HELM service format:

reference to the Docker

image where it is stored in

D3.3 – Open Network App Repository V1.0

 G.A. 101016912 Page 19|85

Item Type Content

the repository

Subservices.package String Subservice package name. Two

types of packages:

• OSM service format: VNF

package as tar.gz

• HELM service format: Docker

image as tar.gz

Sap Object Service Access point Object

Sap.name String Name of the SAP/SAPs of which the

service is composed

Monitoring_endpoint Object Monitoring Endpoint container

object

Monitoring_endpoint.service_ref String Reference to the Service where the

Network App monitoring service is

reachable

Monitoring_endpoint.sap_ref String Reference to the SAP where the

Network App monitoring service is

reachable.

Monitoring_endpoint.url String URL where the SLIs exposed by the

Network App are available.

External_endpoints Object External Endpoints object

External_endpoints.name String Name of the External Endpoint

container object

External_endpoints.service_ref String Reference to the Service where the

Network App service reachable

through this external endpoint is

available

External_endpoints.sap_ref String Reference to the SAP where the

Network App service reachable

through this external endpoint is

available

External_endpoints.security_group_rules List List of Security_group_rules type

objects applicable to the External

Endpoint. Only supported for OSM

service format

Security_group_rules Object Security group rules object.

Security_group_rules.id_ref String Id reference of the security group

rule defined in the Security Group

Rule list of type Object

Access_endpoints Object Access Endpoint object. Only

supported for OSM service format

Access_endpoints.name String Name of the Access Endpoint

container object

D3.3 – Open Network App Repository V1.0

 G.A. 101016912 Page 20|85

Item Type Content

Access_endpoints.service_ref String Reference to the Service where the

Network App service reachable

through this access endpoint is

available

Access_endpoints.sap_ref String Reference to the SAP where the

Network App service reachable

through this access endpoint is

available

Access_endpoints.security_group_rules List List of Security_group_rule type

objects applicable to the Access

Endpoint

Access_endpoints.policies List List of Policies type objects

applicable to the Access Endpoint

Security_group_rules Object Security group rules container object

Security_group_rules.id_ref String Id reference of the security group

rule defined in the Security Group

Rule list of type Object

Policies Object Policies container object

Policies.key String Name of the specified Access Policy.

Allowed values:

• Latency: Maximum Latency

(ms)

• Jitter: Maximum Jitter (ms)

• Bandwith_UE: Minimum

Bandwidth per UE (Kbps)

• Bandwith_aggr: Minimum

Bandwidth aggregate (kbps)

• Availability: Minimum

Availability (number of nines)

• Reliability: Minimum

Reliability (number of nines)

• Density: Minimum Device

Density (UE/km2)

Policies.value Integer Value of the specified Access Policy

Internal_links Object Access Link Object. Only supported

for OSM service format

Internal_link.name String Name of specific internal link

Internal_link.endpoints List List of endpoint type objects

applicable to the Internal link

Endpoints Object Endpoint Object

Endpoints.service_ref String Reference to the Service where the

Network App service reachable

through this internal link is available

Endpoints.sap _ref String Reference to the SAP where the

Network App service reachable

D3.3 – Open Network App Repository V1.0

 G.A. 101016912 Page 21|85

Item Type Content

through this Internal link is available

SLOs Object Service Level Objective object

SLO.name String Name of the SLO

SLO.expression String Time series data aggregation

expression. Either the field metric or

expression must exist in an SLO

object.

SLO.metric String Reference to the metric when

presented as already aggregated.

Either the field metric or expression

exist in an SLO object.

SLO.threshold Integer If the value of the SLO is GREATER

Than or LOWER than (see

“threshold_type” field) this value, it

constitutes a violation of the SLO.

SLO.threshold_type String Type of the threshold. Allowed

values are GT (GREATER THAN) or

LT (LOWER THAN)

SLO.Action Object Action type object describing the

action to be taken if SLO is violated.

SLO.granularity Integer Every Number of Seconds that this

SLO will be checked. A value of “0”

means best effort.

SLO.cycles Integer Number of cycles of granularity time

that the thresholds must be crossed

in order to consider a violation of

SLO.

Action Object Action container object

Action.target_ref Object Target reference type object

describing the reference of

Subservice and Service to perform

the action.

Action.action_step String Action to be executed every time

the SLO is violated. Allowed values

are:

• TRIGGER_SCALE_UP

• TRIGGER_SCALE_IN

• TRIGGER_MIGRATION

Target_ref Object Target reference container object

Target_ref.target_service_ref String Reference to the Service

Target_ref.target_subservice _ref String Reference to the subservice.

Supported for OSM service format.

In the case of HELM service format it

is optional.

Security_group_rule Object Security Group Rule container object

D3.3 – Open Network App Repository V1.0

 G.A. 101016912 Page 22|85

Item Type Content

in the format of ETSI Standard

descriptor defined in SOL006. Only

supported for OSM service format

Security_group_rule.id Integer Id of the Security Group Rule

Security_group_rule. description String Description of the Security Group

Rule

Security_group_rule. direction String Direction of the Security Group Rule.

Allowed values:

• Ingress

• Egress

Security_group_rule.ether_type String Type of the Security Group Rule.

Allowed values:

• IPV4

• IPV6

Security_group_rule.protocol String Protocol of the Security Group Rule.

Allowed values:

• TCP

• UDP

• Any

Security_group_rule.port_range_min Integer Minimum port number of the range

applicable to the Security Group

Rule.

Security_group_rule.port_range_max Integer Maximum port number of the range

applicable to the Security Group

Rule.

Table 2 Smart5Grid Network App Information Model

3.2. OSR Data Model

This Section describes the data model of the data elements that are utilized in the OSR.

User

A User represents any user that has access to the OSR.

Group

A Group describes a group of users. One user can be part of many groups and one group can have

many users.

User Role

A User Role defines an authority level on a given subject or a set of subjects.

D3.3 – Open Network App Repository V1.0

 G.A. 101016912 Page 23|85

Permissions

Permissions are a rule (or restrictions) to perform actions such as view, create, update, delete to objects

for a specific user or a group of users.

Network App

A Network App is a high-level entity that provides an abstraction on a combination of lower-level entities

(Network Services and VNFs) in order to provide a service. A Network App can have multiple Network

App descriptors, each of which represent a different version of the Network App.

Network App Descriptor

A Network App descriptor is the entity that contains the actual information that describe in detail how

each sub-component is connected and interacts with each other. It important to note that while the

OSR’s Network App descriptor stores all the information of the Network App descriptor that will be

applied to the Network App Controller, the OSR Catalogue can be agnostic to the detailed information

and it provides flexibility on the formats of the descriptors that can be stored. However, the OSR expects

certain fields to exist and uses them to better represent the information through the OSR API.

Network App Test

A Network App Test contains the information returned by the V&V Platform.

Network Service

A Network Service represents collection of lower-level components such as VNFs and VDUs that are

linked and configured in a way that they provide a network functionality of joined cause. It is linked to a

code repository in the Code Versioning Service to store and keep track of changes performed to the various

version of its descriptors.

Network Service Descriptor

A Network Service Descriptor contains the information that determine exactly how the Network Service is

comprised in terms of required VNFs and their associated VNFFGD (VNF Forwarding Graph Descriptor).

As it is mentioned in the Network App descriptor, the NS descriptor also provides flexibility to the

structure of the descriptors data.

VNF

Virtual Network Functions (VNFs) are virtualized services, formerly carried out by proprietary, dedicated hardware

technology. Common VNFs include virtualized routers, firewalls, WAN optimization, and network address

translation (NAT) services. In the context of the OSR the VNF is a generic entity being a subcomponent of the

Network Service. Similarly, to the Network Service that has a link to a code repository in the Code Versioning

Service.

VNF Descriptor

D3.3 – Open Network App Repository V1.0

 G.A. 101016912 Page 24|85

The VNF Descriptor contains the connection points and the virtual links of the referenced VDUs that

comprise the VNF. Again, the OSR is agnostic to the format of the descriptor allowing maximum

flexibility.

VDU

Virtual Deployment Unit is a basic part of VNF. In the case of the Smart5Grid project it is the container

that hosts a network function. VDUs are mapped to both the Code Versioning Service hosting the

software code in a linked code repository and the Image Registry hosting the packaged software images

in a linked image repository.

D3.3 – Open Network App Repository V1.0

 G.A. 101016912 Page 25|85

4. Architectural Components and Interfaces

The main component of the OSR that provides external interfaces is the OSR Network App Catalogue

(OSR NCAT). In order to provide the necessary functionality OSR internal components interact with each

other. We define the internal interfaces as they are depicted in Figure 2 and Figure 3.

Figure 2: OSR internal and provided interfaces

4.1. OSR Authentication and Authorization Service

sso – aa interface

The Authentication and Authorization Service provides the “sso – aa” interface which implement the

authentication and authorization to the users or systems on all of the OSR’s components leveraging the

OpenID Connect protocol. It includes user registration, user authentication and authorization. The

authentication takes place by providing the user credentials, then the A&A service returns a token which

validates the authentication of the user and provides authorization to perform specific actions on the

OSR.

Method Name Description Protocol Provides Interface
to

Get Access Token Obtain SSO OpenID Connect Access
Token for a user

HTTPS CLI, UI, Network
App Catalogue,
Image Registry

Create User Method that allows User Registration HTTPS UI

D3.3 – Open Network App Repository V1.0

 G.A. 101016912 Page 26|85

using the User Interface, or directly the
A&A Service.

Table 3: sso - aa interface methods

ncat – aa interface

This interface provides all the methods required by the OSR NCAT to manage in the OSR A&A Service in

order to provide access to users when the OSR NCAT resources are being created, modified or deleted.

Method Name Description Protocol
Get User(s) Return a list of the Users registered in the Smart5Grid project,

or single user if an id is specified
HTTPS

Create/Update User Create a User based on provided user details, if the User exists,
the details will be updated

HTTPS

Get Group(s) Return a list of the Groups, or single group if an id is specified HTTPS
Create/Update

Group
Creates a Group based on provided user details, if the Group
exists, the details will be updated

HTTPS

Delete Group Delete an existing Group HTTPS
Add User to Group Add an existing User to a Group HTTPS
Remove User from

Group
Remove a User from a Group HTTPS

Table 4: ncat – aa interface methods

4.2. OSR Network App Catalogue

cli – ncat interface

This interface is the main interface provided by the OSR to the clients (users or systems). It provides the

management of the OSR NCAT’s components (Network Apps, NSs, VNFs) and initiates most of the

internal component interactions.

Method Name Description Protocol
Show User Detailed

View
Get a specific User’s detailed fields. HTTPS

List User Repository
Keys

List a specific User’s public ssh keys. HTTPS

Create User
Repository Key

Add User’s public ssh key, needed for underlying Code
Repository Service actions.

HTTPS

Delete User
Repository Key

Delete User’s public ssh key HTTPS

List Network Apps Get a list of all visible Network Apps across the OSR for the
authenticated user.

HTTPS

Create a Network
App

Create a new Network App. Available only for users who can
create Network Apps.

HTTPS

Update a Network
App

Update an existing Network App’s details. HTTPS

Delete a Network
App

Delete a new Network App. Available only for users who can
delete the specified Network App.

HTTPS

Fork Network App Create a new Network App being the exact duplicate of the
selected Network App. The new Network App will be owned by

HTTPS

D3.3 – Open Network App Repository V1.0

 G.A. 101016912 Page 27|85

the initiator user.
Sync Network App

from Code
Versioning Service

Synchronize the content of the code existing in the related
repository in the Code Versioning Service to the data presented
by the OSR Catalogue Service.

HTTPS

Upload Network
App Descriptor

Upload the Network App descriptor files archived and
compressed in “tar.gz” format. Available only for users who can
alter the content of the specified Network App.

HTTPS

Download Network
App Descriptor

Download the Network App descriptor archive file, compressed
in “tar.gz” format.

HTTPS

Perform V&V test
on a Network App

Perform a test via the V&V Platform on a specific version of a
Network App. Available only for users who can alter Network
App content.

HTTPS

Get V&V test results Retrieve the test results from V&V Platform on a requested test. HTTPS
List Network

Services
Get a list of all visible Network Services for the authenticated
user.

HTTPS

Show Network
Service Detailed

View

Get a specific Network Service’s detailed fields. HTTPS

Create a Network
Service

Create a new Network Service. Available only for users who can
create Network Services.

HTTPS

Update a Network
Service

Create a new Network Service. HTTPS

Delete a Network
Service

Delete a new Network Service. Available only for users who can
delete the specified Network Service.

HTTPS

Fork Network
Service

Create a new Network Service being the exact duplicate of the
selected Network Service under a specified existing Network
App. The Network App must be owned by the initiator user.

HTTPS

List VNFs Get a list of all visible VNF s for the authenticated user. HTTPS
Show VNF Detailed

View
Get a specific VNF’s detailed fields. HTTPS

Create a VNF Create a new VNF. Available only for users who can create
VNFs.

HTTPS

Update a VNF Update an existing VNFs details. HTTPS
Delete a VNF Delete an existing VNF. Available only for users who can delete

the specified VNF.
HTTPS

Fork VNF Create a new VNF being the exact duplicate of the selected VNF
under a specified existing Network App. The Network App must
be owned by the initiator user.

HTTPS

List VDUs Get a list of all visible VDUs s for the authenticated user. HTTPS
Show VDU Detailed

View
Get a specific VDU’s detailed fields. HTTPS

Create a VDU Create a new VDU. Available only for users who can create
VDUs.

HTTPS

Update a VDU Update an existing VDU’s details. HTTPS
Delete a VDU Delete a new VDU. Available only for users who can delete the

specified VDU.
HTTPS

Get Event Logs Generate a list of logs that match the provided filters (time
period, action performed, object ID etc.)

HTTPS

Table 5: cli – ncat interface methods

4.2.1. OSR Code Versioning Service

ncat – cv interface

D3.3 – Open Network App Repository V1.0

 G.A. 101016912 Page 28|85

The OSR NCAT communicates with the OSR Code Versioning (OSR CV) service via the “ncat – cv”

interface. This interface is used to perform all the interactions for the management of the Code

Versioning Service resources that map to OSR NCAT entities. For example, a Network App maps to a

repository in the OSR CV service, where the Network App Descriptor files can be stored. Interactions with

the mapped objects include CRUD operations, and syncing information from the Code Versioning

repositories to the OSR NCAT instances.

Method Name Description Protocol
List Users Get a list of all the User instances of the Code Versioning

Service.
HTTPS

Show User Details Show User’s detailed information. HTTPS
Create User Create User in the Code Versioning Service that maps to the

User instance in A&A Service
HTTPS

Delete User Delete an existing User. HTTPS
Create User Code

Repository Key
Add User’s public ssh key, needed for underlying Code
Repository Service actions.

HTTPS

Delete User
Repository Key

Delete User’s public ssh key. HTTPS

List Groups Get a list of all the Group instances of the Code Versioning
Service.

HTTPS

Show Group Details Show Group’s detailed information. HTTPS
Create Group Create Group in the Code Versioning Service that maps to the

Group instance in A&A Service
HTTPS

Delete Group Delete an existing Group. HTTPS
Get Users in Group Get a list of all the users that are members in a Code Versioning

Group.
HTTPS

List Code
Repositories

List existing Code Repositories in the Code Versioning Service. HTTPS

Show Code
Repository Details

Show details of a Code Repository. HTTPS

Create Code
Repository

Create a new Code Repository. HTTPS

Add Code
Repository Member

Add an existing User to a Code Repository. HTTPS

Remove Code
Repository Member

Remove a User from a Code Repository. HTTPS

Delete Code
Repository

Delete a Code Repository. HTTPS

Get Code
Repository Filepath

List

Get a Code Repository’s directory and file tree in a list. HTTPS

Sync Files to Code
Repository

Synchronize files uploaded from the Network App Catalogue to
the Code Repository.

HTTPS

Table 6: ncat – cv interface methods

cli – cv interface

This is a publicly accessible interface, that provides clients direct access to the OSR CV service. The

interactions available consist of file and code management in the repositories generated by the OSR

NCAT service based on the underlying software used. This interface is directly provided by the

underlying open-source software and it was not developed in the context of OSR. It contains all the

typical GIT server functionality (eg. Push, Pull etc.). The protocols supported are HTTPS and SSH.

D3.3 – Open Network App Repository V1.0

 G.A. 101016912 Page 29|85

4.2.2. OSR Image Registry

ncat – ir interface

The OSR NCAT communicates with the OSR Image Registry (OSR IR) via the “ncat – ir” interface. The

main functionality of the interface is the mapping and management of container images and Helm charts

to the corresponding OSR NCAT VDU instances.

Method Name

Description Protocol

List Users Get a list of all the User instances of the Image Registry. HTTPS
Show User Details Show User’s detailed information. HTTPS

Create User Create User in the Image Registry that maps to the User
instance in A&A Service

HTTPS

List Groups Get a list of all the Group instances of the Image Registry. HTTPS
Show Group Details Show Group’s detailed information. HTTPS

Create Group Create Group in the Image Registry that maps to the Group
instance in A&A Service

HTTPS

Delete Group Delete an existing Group. HTTPS
Get Users in Group Get a list of all the users that are members in a Image Registry

Group.
HTTPS

List Image
Repositories

List existing Image Repositories in the Image Registry. HTTPS

Show Image
Repository Details

Show details of an Image Repository. HTTPS

Create Image
Repository

Create a new Image Repository. HTTPS

Get Image
Repository Artifacts

Get an Image Repository’s Artifacts HTTPS

Get Image
Repository Helm

Charts

Get an Image Repository’s Helm Charts. HTTPS

Delete Image
Repository Helm

Chart

Get a Helm Chart belonging to an Image Repository. HTTPS

Add Image
Repository Member

Add an existing User to an Image Repository. HTTPS

Remove Image
Repository Member

Remove a User from an Image Repository. HTTPS

Delete Image
Repository

Delete an Image Repository. HTTPS

Table 7: ncat – ir interface methods

cli – ir interface

This interface is provided publicly to clients (users or systems). It offers direct access to images

management like upload and download operations.

D3.3 – Open Network App Repository V1.0

 G.A. 101016912 Page 30|85

4.2.3. OSR Event Logging Service

Figure 3: OSR Event Logging internal interfaces

ncat – el interface

This interface interconnects the OSR NCAT with the OSR Event Logging (OSR EL) service for the purpose

of retrieving and filtering the stored event logs in the Event Logging Service. The OSR NCAT to OSR EL

service interaction includes another interface “elag - ncat” which we consider as separate because it has

a very different implementation.

Method Name Description Protocol
Get Logs Generate a list of logs that match the provided filters (user ID,

time period, action performed, object ID etc.)
HTTPS

Table 8: ncat – el interface methods

elag – elagr interface

This interface provides the event log gathering functionality from an Event Logging Agent to the Event

Logging Aggregator component. The Event Logging Agents are collocated with the monitored service

(Network App Catalogue, A&A, Image Registry, Code Versioning services) but they are elements of the

Event Logging Service.

elagr – elastr interface

This interface provides the event log storage to the Event Logging Storage after the are aggregated and

modified in the Event Logging Aggregator component.

D3.3 – Open Network App Repository V1.0

 G.A. 101016912 Page 31|85

4.3. External Component Interfaces

4.3.1. V&V Interface

The V&V Request Handler is used by the OSR to trigger the verification and/or validation of a Network

App when it is uploaded to the OSR. This interface can also be used by external components and third-

party users to verify and/or validate their Network Apps. The V&V will return a Unique Identifier (UID) of

its run, which can then be used to retrieve information on the verification and validation process.

4.3.2. NAC Interface

The NAC interface of the OSR is used by the NAC to download the Docker images and the Helm charts

included in a Network App. And since the OSR embeds a Harbor instance – which implements the OCI

distribution specifications – every library and tool compliant with such specification can be used to

interact with the OSR. For instance, Docker images can be pulled using the docker pull command.

Similarly, Helm charts can be pulled from the OSR using the helm cm-push command and public libraries

e.g., Go Helm Client [14]

For what regards UC1, UC3, and UC4, the NAC, NearbyONE, uses the Go Helm Client to pull the Helm

charts, render them, and deploy its releases to the target Kubernetes clusters in the edge nodes. In turn,

Kubernetes will use its built-in mechanism to pull Docker images from the OSR; exactly like it would be

from Docker Hub or any other registry.

D3.3 – Open Network App Repository V1.0

 G.A. 101016912 Page 32|85

5. Technological Assessment and Implementation

5.1. Technological Assessment

For the OSR Authentication and Authorization Service, the Python programming language has been

used for the driver software implementation.

Python is one of the most famous and widely used programming languages. It is a general-purpose

language and it is often used to build websites and software, automate tasks, and conduct data analysis

and visualization. Its strength lies to the freedom that it offers to the developer. It is easy to begin with,

but it gets complex the more engaged one gets. This comes in contrast with most other famous

languages like Java, C and Go that have more complex syntaxes, are less human-readable and present a

greater overhead when initiating a new project. On the other hand, Python is beginners-friendly, while it

also constitutes a great means for advanced software tasks. Moreover, it is open source, it has a vast and

continuously growing archive of modules and libraries and it has a large and active community.

Therefore, it creates a great place for discussing possible issues that may come up, it makes

development easier and faster and enables developers to find and use the best practices (since everyone

is using Python, the best practices may be found implemented in Python!) thus developing more efficient

and robust solutions.

Position PYPL ranking

#1 Python

#2 Java

#3 JavaScript

#4 C#

#5 C/C++

Table 9: Most popular programming languages according to the PYPL index (September 2022). [15]

Table 9: A huge advantage of Python is the wide selection of libraries and frameworks it offers. The

development time-to-market will improve by leverage them, since there won’t be a need for coding

features manually.

One of the biggest criticisms of Python is the runtime, which is relatively slow when compared to other

languages.

For all OSR components and the Smart5Grid Platform User Interface, we have used Keycloak [16] open-

source software for user management and single-sign-on (based on OpenID connect).

Keycloak is maybe the most popular Identity and Access Management (IAM) solution, among other

alternatives like Auth0 [17] and AWS IAM Identity Center [18]. Keycloak is an open-source service that has

a large and active community. It helps Software and DevOps Engineers guarantee their platform’s

security without having to worry about it themselves. Therefore, it saves them quite a lot of time, while it

also ensures that the best practices with regards to User Management and Authentication are applied.

Moreover, it adds to the system’s component-based architecture in contrast with the old-fashioned

monolithic architectures and it can also be implemented in an isolated Docker Environment, thus making

D3.3 – Open Network App Repository V1.0

 G.A. 101016912 Page 33|85

it a portable and easy to deploy tool. Keycloak positions its design as primarily for applications and

services. The emphasis on third-party application identity security enables monitoring and securing third-

party programs with little coding. Yet Keycloak also provides out-of-the-box user authentication and

federation. Furthermore, it provides standard protocols, centralized management, password policies, and

even social login for Customer Identity and Access Management (CIAM) needs. Keycloak supports SSO

“Single-Sign-On”, several protocols like OpenID Connect, OAuth 2.0, SAML 2.0, Social media login and

supports LDAP and Active directory. It also supports custom password policies. Basically, there is no

good reason not to use Keycloak in order to perform IAM. For the above reasons, Keycloak was deemed

as the best fit in the framework of the Smart5Grid project.

An alternative that was also considered (but not selected) is OpenIAM [19]. This stands as perhaps one of

the most well-known open-source identity management tools; it features Single Sign-On, user and

group management, flexible authentication, and automated provisioning—a major component of

identity governance and administration. Moreover, OpenIAM aims to help reduce enterprise operational

costs and improve identity audits via a centralized control station. The community version doesn’t

enforce a time limit on subscriptions and benefits from community forum support. The reason we have

chosen Keycloak was wider adoption and community support.

For the OSR Network App Catalogue we have used the Python programming language and the Django

framework.

Frameworks provide basic infrastructure in order to develop a robust software application. A Python

framework, like any framework in other languages, cushions the software development project with a

foundation to build on top of it. To be more specific, they render the generic functionality of the

program, so developers don’t have to start from scratch. Also, they automate standard application

building steps, using the respective programming language, thus saving more time on development.

Python frameworks come in various shapes and sizes. Factors that may affect which framework to

choose include scalability, expertise, and business-specific goals.

Full-stack frameworks are suitable for both back-end and front-end development. Web development

consists of front-end tools for graphic user interface (UI) design and back-end services like databases,

security protocols, and business logic. A full-stack Python framework will carry all the equipment needed

to facilitate full-stack development. Django is a full-stack framework and is the second most popular

Python framework.

Microframeworks are by definition lightweight. In some ways, it is the opposite of a full stack framework.

Python’s official Flask documentation explains that the “micro” in microframework signifies that the

framework’s “core [is] simple, but extensible”. The components that are fundamental to a full stack

framework like a database management system and certain security measures do not come naturally to

a microframework. While this might seem like a bad thing, it actually encourages flexibility for developers

who want to leverage control over their software, only adding in the relevant third-party libraries when

they’re completely necessary.

Asynchronous Frameworks: Asynchronous programs are event-driven. Rather than line by line

operational handling where one function runs after the other, asynchronous code is non-blocking and

doesn’t wait for one event to execute before starting another. Because of this parallel programming

technique, asynchronous frameworks allow for a profusion of high-performance concurrent connections

via running on an async-capable server.

D3.3 – Open Network App Repository V1.0

 G.A. 101016912 Page 34|85

Django is one of the most popular full-stack frameworks in Python and is used in many platforms such as

YouTube and Drobox. In comparison with other Python frameworks, Django is backwards compatible,

meaning that it offers the provision of working with its older versions and makes use of its older formats

and features. It is constantly kept up to an elevated standard, following the most recent patterns in

website development and security. It is regularly updated with security fixes, and regardless of whether

the developer utilizes an older version of the system, its security is as intact as the new one. Additionally,

Django has a large community of developers, making the search for answers to problems much easier.

Django is a good fit for bigger projects, where extensive backend and frontend support is required or in

cases where time plays a crucial role, as Django offers a large number of ready components. Coding in

Django mostly relies on customizing generic parts of code. The developer must follow a set of rules that

come with given element. For projects where a lot of code flexibility is desired, Django might not be the

best choice.

Other framework alternatives considered for use in this project are:

Flask: Flask is one of the most popular microframework (meaning it does not require particular tools or

libraries) that does not hold any tools or functions that a third-party library can fulfill as essential to its

packaging. However, Flask supports extensions that can add application features as if they were

implemented in Flask itself. Extensions exist for form validation, upload handling, various open

authentication technologies and several common framework related tools.

Flask is mainly used for small and medium projects. Setting Flask for a bigger project from the beginning

can be tricky.

BlueDream: BlueDream is a Python framework that is most optimal for building medium and large

applications. More than a framework, Blue Bream is a server and library too. Some of its best features are

its component architecture, transactional object database, and integrated security protocols.

For the OSR Network App Catalogue the PostgreSQL database has been used.

PostgreSQL is a common and well-regarded open-source relational database. It supports a huge

number of data types including common database primitives and more importantly network addresses.

Network-related types like CIDR addresses, addresses with subnet masks, and MAC addresses, both for

IPv4 and IPv6, are useful for a network related application such as the Smart5Grid Platform. Other

advantages of PostgreSQL include robust authentication, access control, and privilege management

systems suitable for organizations of any size. PostgreSQL has mature user authentication and

authorization functionality to define who can use the system and what each user is allowed to see or do.

It offers Write-Ahead Logging to provide point-in-time recovery, failover, and streaming replication:

these technologies help ensure that the database remains consistent even if the software crashes, and

helps copy data between systems for scaling and backing up.

PostgreSQL, together with SQLite and MySQL, and are the three most popular open-source relational

database management systems in the world. Each has its own unique features and limitations, and excels

in particular scenarios. There are quite a few variables at play when deciding on an RDBMS, and the

choice is rarely as simple as picking the fastest one or the one with the most features.

D3.3 – Open Network App Repository V1.0

 G.A. 101016912 Page 35|85

PostgreSQL SQLite MySQL

Advantages

• SQL compliance

• Extensible

• Open-source and

community-driven

• Small footprint

• User-friendly

• Portable

• Popularity and ease of

use

• Security

• Speed

• Replication

Disadvantages

• Memory performance

• Popularity

• Limited concurrency

• No user

management

• Security

• No full SQL compliance

• Slowed development

• Licensing and proprietary

features

When To Use

• Data integrity is

important

• Integration with other

tools

• Complex operations

• Embedded

applications

• Disk access

replacement

• Testing

• Distributed operations

• Websites and web

applications

• Expected future growth

When Not To Use

• Speed is imperative

• Simple setups

• Complex replication

• Working with lots of

data

• High write volumes

• Network access is

required

• SQL compliance is

necessary

• Concurrency and large

data volumes

Table 10: Comparison of PostgreSQL, SQLite and MySQL [21]

For the OSR Code Versioning Service the Python programming language has been used for the driver

software implementation. Furthermore, integration with GitLab open-source software has been

performed to store object descriptors and keep track of their different versions.

Git versioning is a crucial part of the continuous integration and continuous development process. There

is no engineer in the world today that does not use some git versioning tool to keep track of code

modifications, safely integrate new features, collaborate with their team, plan, monitor and verify new

releases and all these, in a simple and automated way. The most popular git tools undoubtedly are

GitHub and Gitlab. In the framework of the Smart5Grid project, Gitlab was chosen as it is an extremely

reliable, open-source tool that constitutes a complete DevOps platform and has Continuous

Integration/Continuous Delivery (CI/CD) and DevOps workflows already built-in. Apart from being a

complete software development solution by its own, Gitlab does offer integrations with some widely

used third-party programs and platforms such as Jira, Microsoft Teams, Slack, Gmail, etc., making it more

powerful and flexible. Moreover, Gitlab does offer an Enterprise Edition that has even more features than

the standard one and comes with user support.

D3.3 – Open Network App Repository V1.0

 G.A. 101016912 Page 36|85

For the OSR Images Registries the driver software has been implemented in the Python programming

language.

Integration with Harbor open-source software has been performed to store container images and Helm

charts. Harbor is an open-source cloud native registry that stores, signs, and scans container images for

vulnerabilities. Harbor is used to solve common challenges by delivering compliance, performance, and

interoperability. It is considered as an extension to the open-source Docker Distribution because it has

added functionalities usually required by users, for instance security, identity and management. A registry

closer to the build and run environment is crucial for the efficiency of image transfer. Harbor supports

replication of images between registries, and also offers advanced security features such as user

management, access control and activity auditing.

There are other replacements for Harbor for a variety of platforms, including Online / Web-based, Linux,

Self-Hosted solutions, SaaS and Docker. A popular alternative is Dedicated Container Registry (a non-

free solution in contrast to Docker Hub or Portus).

The OSR Event Logging Service is heavily based on Elasticsearch [22], Logstash [23], and Filebeat [24]

agents open-source software:

• Elasticsearch as a distributed log database and search engine

• Logstash to modify logs to a unified format

• Filebeat agents in each logged component to gather and push logs to Logstash

The ELK stack, comprising of Elasticsearch, Logstash, Filebeat (also Kibana [25], while deployed for

internal use, is not considered part of the OSR), provides a complete solution for collecting, aggregating,

storing, securing, indexing, querying and visualizing data. It allows the developer to easily transform the

collected data to a common representation format before storing it to the database for fast querying

and retrieval. It is a widely used stack of tools/components, that may be deployed in isolated Docker

containers, enhancing even more the component-based architecture of the Smart5Grid platform.

Moreover, the ELK stack is quite popular for log management which is critical for diagnosing and

troubleshooting issues for optimal application performance, as well as for system monitoring.

There are also other individual components alternative to the sub-components of the ELK stack, like

Kafka (for the data collection), scripting languages like bash, or even programming languages like Python

(for the data transformation) and other NoSQL databases like MongoDB (for the data storage), but there

is no single service that integrates them all in one, complete service able to cover all requirements of the

OSR Event Logging Service, like the ELK stack does.

5.2. Technological Decisions and Configuration

5.2.1. OSR A&A

As it is mentioned in section 5.1, the underlying open-source software used to implement the OSR A&A

was Keycloak and the Single-Sing-On technology that links all OSR subcomponents is OpenID Connect.

The OSR consists of several different components, each of which requires secure user authentication to

provide users with access to the application’s features. An example of this challenge is having a user

D3.3 – Open Network App Repository V1.0

 G.A. 101016912 Page 37|85

owning resources on the OSR Code Versioning service and also, on the OSR Image Registry service.

Having multiple separate user management points and methodologies that need to be synchronized

would result in a highly complex, hard-to-manage, and error-prone procedure. The solution adopted

using Keycloak and OpenID Connect helps us overcome this challenge.

The authentication protocol enabled in Keycloak is OpenID Connect (OIDC). OIDC is an authentication

protocol that is an extension of OAuth 2.0. OIDC is a complete authentication and authorization

protocol. It leverages Json Web Token (JWT) set of standards which define an identity token in JSON

format and ways to digitally sign and encrypt that data in a compact and web-friendly manner. In order,

to better explain the OIDC process of authentication and authorization we present the definition of its

basic concepts. [22]

“Client” is an OAuth 2.0 Client using OpenID Connect, can also be referred to as Relying Party (RP).

“Claim” is a piece of information asserted about an Entity. An “Entity” is something that has a separate

and distinct existence and that can be identified in a context.

“End-User” is a human participant and is one example of an Entity.

“Claim Type” is the syntax used for representing a Claim Value. This specification defines Normal,

Aggregated, and Distributed Claim Types.

“Claims Provider” is a server that can return Claims about an Entity.

“Credential” is data presented as evidence of the right to use an identity or other resources.

“Subject Identifier” is a locally unique and never reassigned identifier within the Issuer for the End-User,

which is intended to be consumed by the Client. The subject Identifier type we are using is “pairwise”.

This provides a different sub value to each Client, so as not to enable Clients to correlate the End-User's

activities without permission.

“ID Token” is a JSON Web Token (JWT) that contains Claims about the Authentication event. It may

contain other Claims.

In our case for the authentication, we use the “Authorization Code Flow” which can be described by the

following steps:

1. Client prepares an Authentication Request containing the desired request parameters.

2. Client sends the request to the Authorization Server.

3. Authorization Server Authenticates the End-User.

4. Authorization Server obtains End-User Consent/Authorization.

5. Authorization Server sends the End-User back to the Client with an Authorization Code.

6. Client requests a response using the Authorization Code at the Token Endpoint.

7. Client receives a response that contains an ID Token and Access Token in the response body.

8. Client validates the ID token and retrieves the End-User's Subject Identifier and the exposed

Claims.

The figure below Figure 4 depicts the authentication interactions of a user login to the Platform User

Interface.

D3.3 – Open Network App Repository V1.0

 G.A. 101016912 Page 38|85

Figure 4: OpenID Connect Platform UI interactions

The exposed Claims on the OSR Network App Catalogue context include the “groups” information which

determine which groups the users can access and on what level based on the role included in the group

claim. The group ids in the OSR A&A claim are mapped to the Group instances created in the OSR

Network App Catalogue, the OSR Code Versioning, and the OSR Image Registry services. User access to

these instances is determined by this mapping. As defined in deliverable 2.2 [13] in section 3.3

“Smart5Grid User Roles and Scenarios” the roles a user can have on an instance are “default”,

“developer”, and “admin”. “default” role mean read access only, “developer” role means access to modify

instances and “admin” full access. Additionally, a user that is the creator (or “owner”) of a n instance has

full control over this instance.

The OSR A&A service is deployed as a Helm chart on the AXON on premises Kubernetes cluster. It

consists of a Keycloak deployment based on the “Codecentric AG” open-source release of the Keycloak

chart and the overlay OSR A&A driver application that was necessary for the integration with the OSR

Catalogue Service. Data persistence was provided by a database in the common PostgreSQL cluster.

Public network communication was made available using the common Load Balancer (HAProxy) and

Kubernetes NodePort service type. The software application was uploaded to AXON’s internal Harbor

repository in Docker image format and a Helm chart for the definition of all the necessary Kubernetes

manifests. This Helm chart includes an existing open-source Helm chart which provides the Keycloak

Kubernetes manifests. The configuration of the Helm chart was uploaded to AXON’s internal GitLab

repository, which was linked to an ArgoCD application manifest, responsible to deploy the complete

stack of manifests to the Kubernetes cluster when changes git merged on GitLab repository’s master

branch. This deployment setup was used for all the OSR components with minor adjustments when

needed or for simplicity reasons.

D3.3 – Open Network App Repository V1.0

 G.A. 101016912 Page 39|85

5.2.2. OSR Network App Catalogue

The OSR Network App Catalogue is a service in which the main logic of the OSR is implemented. It

communicates with and coordinates all the other OSR components. For the OSR CV service and the OSR

IR, the OSR NCAT communicates with the corresponding developed driver for each component. All the

actions initiated by the OSR NCAT are propagated to the corresponding component as a REST API

request. As they are defined in section 4.2 most of the cli – ncat methods that serve requests that

originate from external actors (users or services) are being translated to methods supported by ncat – cv

and ncat – ir interfaces. In the case of the OSR EL service, the OSR NCAT communicates directly with the

Elasticsearch API but limits the exposure of logs only to the permitted for each user. The integration with

the OSR A&A service is implemented using the “mozilla-django-oidc” authentication and access

management library. The OSR NCAT is set up as an OpenID Connect “Client” in the OSR A&A context

with almost administrative access to all of OSR A&A resources.

The OSR NCAT fully uses the data model described in section 3.2. In order to provide a comprehensive

explanation of how the models are linked and interact with each other we describe the internal actions

and communications occurring in the main functionalities offered by the OSR:

• The user registers a new user directly to the OSR A&A service, this functionality is only provided

by a web browser interaction. This causes a user to be created at the OSR A&A service. Then the

user requests an access token from the OSR NCAT. The OSR NCAT by making use of the

registered “Client” retrieves the token and returns it to the user. This token can be used for

several requests until it is expired.

• The user creates a VDU on the OSR NCAT. A VDU object that contains the information on the

actual software image that is going to be used. The user is assigned the “developer” role for this

object (the VDU). Via the ncat – ir interface a group and a project are created in the OSR IR the

user is also assigned the “developer” role for these resources in the OSR IR context. Moreover,

via the ncat – cv interface a new group and a new repository are created in the OSR CV service.

Then the user can upload the VDU application’s code to the newly created code repository. After

the development process has reached a point of publishing or testing the VDU the user creates

an image from the code and uploads a docker image or a Helm chart directly to the created

registry. Creating and uploading the image can be done either using automation features

provided by the underlying GIT server software GitLab such as the GitLab-CI or by other means

of user preference. In either case, this step requires some manual configuration from the part of

the user. By following this process multiple VDUs can be created at this stage.

• Then the user creates a Network App object in the OSR NCAT causing a new repository to be

created at the OSR CV via the ncat – cv interface. The user is assigned the “developer” role in

both the context of the OSR NCAT and the OSR CV. The Network App has no content at this

point. To add content the user can add content by uploading a Network App descriptor. The

uploaded data is then parsed and stored in the repository. If the descriptor contains descriptors

of Network App subcomponents such as Network Services or VNFs, these are also created as

OSR NAC objects with references to their corresponding committed versions.

• Once the Network App is created, the user can use an alternative method to upload the

descriptors. Using directly the OSR CV the user can add or modify the repository contents and

when a new version needs to be known to the OSR NAC the user can use the “Sync from the

Code Versioning Service” action to upload it. This creates a new instance of descriptor objects in

the OSR NAC using the contents of the chosen commit.

D3.3 – Open Network App Repository V1.0

 G.A. 101016912 Page 40|85

All Network App sub-components are meant to be reusable. The OSR NCAT provides this functionality

via the “fork” action. By “forking” a component OSR NCAT creates a duplicate component of the version

specified a new object is created in the OSR database and a new repository is created in the OSR CV

having the contents of the repository specified.

Deleting objects follows the opposite process of, firstly, removing entities from the OSR CV and OSR IR

components and then from the OSR NCAT, using ncat – cv and ncat – ir interfaces respectively.

During this whole process, we have omitted to mention that in each action performed on every OSR

component logs have been generated for each of the events. Such events can be queried by the user. A

query in the events triggers an OSR NCAT to translate it and send an expanded query to be performed

to the OSR EL through the ncat – el interface.

The OSR-NAC is developed as a Python web application using the Django framework using the common

PostgreSQL cluster as the database. It is deployed on the AXON on-premises Kubernetes cluster as a

Kubernetes service using the required manifests (service, deployment, pod, configmap, secret).

5.2.3. OSR Code Versioning Service

The OSR Code Versioning service is an application that provides a REST API for GIT server operations in

order to be compatible with the OSR Catalogue workflows. In section 4.2.1 “OSR Code Versioning Service

Interfaces” all the provided functionality of the OSR CV service is described. To accomplish this, we have

developed these interfaces as a Python application that translates the requested action into actions to be

performed to the GIT server to perform the required result. As the GIT server we have chosen GitLab

open-source software. This GitLab instance differs from the internal GitLab instance that we use for our

code development purposes. The OSR CV service is not bound with the GitLab software, a different GIT

server software could be used with the development of a new driver. However, we leverage GitLab

functionality by providing direct access to the users of the OSR. Instances of GitLab resources that are

created by the OSR such as projects and repositories can be accessed directly from the GitLab user

interface. While, the functionality is limited, in order not to intervene with the OSR workflows, this

provides an additional tool in the hands of the OSR user and specifically to the developers of Network

Apps. For the integration with the OSR A&A, we have enabled OmniAuth GitLab feature which allows

multiple authentication providers. We have configured OmniAuth with OSR A&A OpenID Connect

provider, in that way GitLab resources can be mapped to users created in the OSR A&A and they can

access the GitLab instance directly. In the figure below we can see the additional button for the OSR

A&A single-sign-on option in the GitLab login page.

D3.3 – Open Network App Repository V1.0

 G.A. 101016912 Page 41|85

Figure 5: GitLab OSR A&A Single-Sign-On Login

When a Network App is created, a corresponding repository is created in GitLab by the OSR and the

initiator user is granted access to this repository. When a Network App Descriptor is uploaded, a commit

is merged to the master branch of the repository. Different versions of the Network App descriptors

correspond to different commits in the repository.

5.2.4. OSR Image Registry

Given that in all of the Smart5Grid Use Cases the Network Apps are implemented in either Docker

containers or Helm charts, the OSR Image Registry are exactly these two: a Docker container registry and

a Helm chart registry. The chosen backend to host such registries is Harbor open-source software as it

supports both of them. In this case, again, we have developed an overlay driver application to facilitate

the integration of the OSR NCAT with the Harbor interfaces. The OSR NCAT communicates with the

Harbor APIs via the OSR IR driver software. It transforms the OSR requests to a series of Harbor API

requests that result in the desirable outcome. While, this logic could have been implemented directly to

the OSR Catalogue code, we have added this layer to provide modularity in the underlying Image

Registry backend (in our case Harbor). The users of the OSR have direct access to the Harbor software as

image access and manipulation directly from the registry is the most popular way developers interact

with them and often required by applications, for example in order to deploy these containers or charts

to a Kubernetes cluster the developer must setup a direct, secure connection to the registry. For the

single-sign-on integration with the OSR A&A we have configured its OpenID Connect provider to

Harbor. This allows users to manage their own images in Harbor registries created by the OSR Catalogue

service. Having the OSR A&A provider configured provides the “LOGIN VIA OIDC PROVIDER” button

option in the Harbor login view.

D3.3 – Open Network App Repository V1.0

 G.A. 101016912 Page 42|85

Figure 6: Harbor OSR A&A Single-Sign-On Login

The OSR IR utilizes the common PostgreSQL database cluster for data persistence and it is deployed as a

Helm chart on the AXON on premises Kubernetes cluster.

5.2.5. OSR Event Logging Service

The OSR Event Logging service is based on the underlying open-source software components used. Log

persistence was implemented on Elasticsearch, log Aggregation on Logstash, and log pushing from the

containers toward the Elasticsearch-Logstash by the Filebeat Agents. The Filebeat agent is deployed as a

Kubernetes Daemonset. This means that an instance of Filebeat exists on all the Kubernetes cluster nodes

and has all the necessary permissions to access the logs of any container from which we need to pull

logs. Using filters in the configuration we define the label of the pods that belong to the Kubernetes

Services that we want to monitor. The services that we monitor are the OSR A&A, the OSR NCAT, the

OSR CV service, and the OSR IR. The Filebeat is also configured to send the logs to the Logstash service.

Logstash is also deployed as a Kubernetes service and receives and parses all the logs coming from the

Filebeat agents. Using conditions and filter in the Logstash configuration we filter only the logs occurring

as a result of OSR users’ actions. In this step logs also get formatted in a unified format for better

information clarity. Logstash is, also, configured to propagate the modified and filtered logs to the

Elasticsearch service. The Elasticsearch service receives and stores the logs arriving from the Logstash

service. Direct access to the Elasticsearch cluster is not allowed to OSR’s external users. OSR exposes a

limited set of logs to the users with the ability to query the logs that relate to only the resources that are

available for each user. All the components of the OSR EL service are deployed as separate Helm charts

on the AXON on premises Kubernetes cluster.

D3.3 – Open Network App Repository V1.0

 G.A. 101016912 Page 43|85

5.2.6. Platform User Interface

The web application was developed using React [27], no middleware server is provided, and the client

directly calls the exposed OSR API. The web app is designed as follows, if you are not authorized you

access a page where there is a button that allows login, there is no direct interface because for login as

required, we use the OIDC authentication system. After logging in you access the dashboard, where 4

cards are shown related to available resources and list of events (Event Logs), also, there is a side menu

that allows access other features. The structure of the web application is shown in the figure

"Components of the web application"

The generic architecture is shown in the following figure.

Figure 7: Platform UI ReactJS Architecture

D3.3 – Open Network App Repository V1.0

 G.A. 101016912 Page 44|85

The following figure shows the directory structure of the application

Figure 8: Platform UI code directory structure

D3.3 – Open Network App Repository V1.0

 G.A. 101016912 Page 45|85

In the following figure we can see how the web application is structured in detail

Figure 9: Platform UI tree structure

The main view is nothing more than the login button container, this is done by calling the

MainButtonsWrapper component, which in turn calls the Login component. The user is presented with

the Login view when first accessing the platform.

D3.3 – Open Network App Repository V1.0

 G.A. 101016912 Page 46|85

Figure 10: Platform UI Login View

There is no login interface provided, the Login component was developed using the react-oidc-context

module, this module requires configuration of some parameters as provided by the specification, i.e.

authority, client_id, redirect_uri, client_secret, response_type, scope, post_logout_redirect_uri. The logic is

implemented as follows: after clicking on the login button the user is redirected, thanks to the oidc

module, to the existing login interface If the user is already registered, he/she can login. Otherwise, the

user can register via the sign-up button provided in that interface. After inputting the authentication

data, OIDC redirects to a callback page, such a component was developed so that it redirects to the

dashboard, eliminating unnecessary parameters from the URL bar.

The header is displayed only if the user is successfully logged in. It provides a logo, information about

the logged in user and a logout button. Also, if the user clicks on the displayed username (top right

corner), he/she can access the user details page. All SSH Keys will be shown here and the user can also

upload new public keys here.

D3.3 – Open Network App Repository V1.0

 G.A. 101016912 Page 47|85

Figure 11: Platform UI User Details View

The public key upload modal will appear. After filling in the required info, the new public key will be

added and displayed in the Code Repository SSH Keys table.

Figure 12: Platform UI Upload Repo Key Modal

After logging in, the user is redirected to the dashboard, which shows all the instances available to this

user, as well as the most recent event logs. In the dashboard view the UI calls the OSR API to enumerate

Network Apps, Network Services, VNFs, and VDUs. This allows the different cards to be built. The view at

the bottom of the screen corresponds the returned event logs.

D3.3 – Open Network App Repository V1.0

 G.A. 101016912 Page 48|85

Figure 13: Platform UI Dashboard View

A more detailed navigation sidebar can be displayed by clicking on the hamburger button at the top of

this navigation.

Figure 14: Platform UI Sidebar

The Network App List View displays all the Network Apps visible to the user. At the end of each row

there is a “Delete” button that deletes the Network App (after confirmation), if the user has the necessary

permissions.

The “Create New” button at the top right brings forward a modal window to create a new Network App.

D3.3 – Open Network App Repository V1.0

 G.A. 101016912 Page 49|85

Figure 15: Platform UI Network App List View

Network App Details view shows the details of a Network App. The drop-down menu right next to the

Network App Name is showing all the descriptor versions of the Network App. By selecting a different

Network App descriptor version, the “Descriptor” section of the view gets updated with the specified

descriptor’s YAML representation. On the top right there is a “Select Action” drop down menu showing

the available actions on the Network App. “Upload Descriptor” displays a modal window to upload a new

Network App Descriptor version. “Edit” shows a modal window to modify main Network App fields (eg.

Description, Visibility etc). “Fork” creates a duplicate Network App owned by current user (after

confirmation). “Sync from repo” creates a new Network App descriptor from the current version of the

master branch of the corresponding OSR CV code repository (Descriptor Link repository). “Download”

downloads the Network App descriptor. “Delete” deletes the Network App (after confirmation). The

Event Logs section at the bottom of the view shows the event logs related to this Network App.

D3.3 – Open Network App Repository V1.0

 G.A. 101016912 Page 50|85

Figure 16: Platform UI Network App Details View

Figure 17: Platform UI Upload Network App Descriptor Modal

D3.3 – Open Network App Repository V1.0

 G.A. 101016912 Page 51|85

Views handling of the Network Service, VNF, and VDU instances are similar in design with the Network

App Views. Aesthetic changes to the Platform UI are likely to occur until the public release of the

Platform.

5.2.7. External Interfaces Integration

After a new Network App is created, the V&V can be triggered to ensure the Verification and/or

Validation of a Network App. The Network App descriptor is then retrieved from the OSR by the V&V

and propagated to the NAC along with the required testing parameters. The NAC retrieves the

referenced Network App data from the OSR.

Figure 18: OSR - V&V - NAC workflow

The designed and defined architecture of a V&V framework considers the NFV automatic testing &

verification framework as a continuous integration, while including UI and Results Manager to simplify

the usage of the V&V by anyone. A Request Handler / API, V&V Engine, Results Manager, Verification

Engine was developed and integrated with the OSR (to download the Network App) and with the

Network App Controller for Helm Chart based Network Apps to onboard and validate the Network App.

This V&V flow encompasses the following steps:

1. The V&V is triggered by the OSR

2. The V&V runs its verification and validation engine

a. Downloads Network App – OSR integration

b. Verifies the Network App – ATOS Verification Engine integration

c. Validates the Network App – NAC integration

d. Stores results – Results Manager integration

D3.3 – Open Network App Repository V1.0

 G.A. 101016912 Page 52|85

Figure 19: V&V test job execution

3. The V&V makes the results available to others in a UI

Figure 20: V&V test result dashboard

4. And in a database accessible programmatically.

D3.3 – Open Network App Repository V1.0

 G.A. 101016912 Page 53|85

Figure 21: V&V test results in the database

The NAC receives a request for the Network App onboarding from the V&V, step 3 in Figure 18. In order

to retrieve the Network App data, the NAC pull the image or Helm chart from the OSR. This functionality

is offered by the OSR Image Registry service. It consists of a PULL action targeting the Network App

related Docker or Helm repository in the OSR Image Registry.

Finally, test results returned to the V&V by the NAC (step 6) are propagated by the V&V to the OSR and

stored in the Network App descriptor information (step 7).

5.3. Laboratory Deployment

For the purposes of the project, we had to deploy a new laboratory environment with different layers of

virtualization that would allow us to deploy software in a flexible manner. We needed automated ways in

order to be able to provision baremetal nodes, virtual machines and containers, as well as a reliable

network storage solution.

For the baremetal node provisioning we chose MAAS (Metal As A Service) open-source tool that offers

server discovery, commissioning, deployment and configuration. MAAS includes a PXE/preseed service,

stores the operating system boot images and is able to automatically deploy nodes according to the

given configuration. Moreover, MAAS offers deploying simple KVM hosts for virtual machine

provisioning.

To have better control over the laboratory’s local network we deployed a local DNS service. This allowed

us to configure network-level domain mappings to better simulate public network environment before.

The open-source software we used is dnsmasq.

For the storage needs we used a simple QNAP appliance storage unit having 3 x 4TB HDD drives in a

RAID 5 array for disk stripping with parity and a 256GB SSD drive for cache to improve performance. This

provided an NFS network storage for all project storage needs.

D3.3 – Open Network App Repository V1.0

 G.A. 101016912 Page 54|85

To follow the microservices approach in our developed software we chose to host a Kubernetes cluster.

Kubernetes is an open-source tool for open-source system for automating deployment, scaling, and

management of containerized applications. The variation of Kubernetes we deployed is called K3S and is

preferred when using lower end servers as a lightweight alternative. We used 3 control nodes for control

plane high availability and 3 worker nodes for application side high availability. For the k3s cluster

persistence a three node PostgreSQL cluster was used one in every control node. In order to use the

NFS storage in an automated way we deployed the Kubernetes NFS Subdir External Provisioner. This

allows requesting PVCs (Persistent Volume Claims) of a storage class related to the existing NFS network

storage mentioned in the previous paragraph.

For the Container Network Interface (CNI) we have chosen the default option for a K3S cluster, Flannel

network fabric with VXLAN backend for packet encapsulation. In order to provide connectivity to our

Kubernetes services from external networks we followed a hybrid approach using a NGINX ingress

controller with Kubernetes ClusterIP services and an external HAProxy Load Balancer with Kubernetes

Node Port type services. A Service is a Kubernetes object that acts as an endpoint for enabling the

communication between various components within and outside the application. In other words, a

service is a stable address for pods. The three important Service types in Kubernetes are ClusterIP, Node

Port, and Load Balancer. ClusterIP is used to group pods together and provide a single interface to

access them. For example, an incoming request by another service will be forwarded to one of the pods

in the ClusterIP randomly. NodePort is a Kubernetes service type that listens on a port on the node and

forwards requests on that port to a pod on the node. When a request is received by a specific node, this

node acts as a built-in load balancer and sends the request to one of the pods at random. The decision

to use both Node Port with external Load Balancer and ClusterIP with Ingress Controller services was to

facilitate setting up the different services when one of the options was causing issues during the

assessment period of choosing our technology stack.

For simplicity and higher agility in the development and testing phase we also needed a simple KVM

host for the various virtual machines deployed. The HAProxy external Load Balancer was deployed as a

Docker container in the KVM host.

The services we deployed for the software development process of the OSR and the Smart5Grid

Platform UI are a GitLab deployment for the code repositories, Harbor as a private Docker registry to

host the created images, and ArgoCD for deployment automation following the GitOps paradigm.

5.4. CI/CD Pipelines

5.4.1. Development Workflow

Figure 22 depicts an example CI/CD workflow during of development of the OSR services. The

developers write new code and commit source code changes, implementing new features or integrating

endpoints, and push their code to GitLab, the central source code repository. The commit automatically

triggers GitLab CI service to pull, build and test the committed source code from the specific feature

branch of the code repository. If the unit tests finish successfully, GitLab CI uses Docker to create a

Docker image, which then is pushed to the private Harbor Docker Registry with an appropriate tag. Once

components have been built and their images have been pushed to the Docker Registry, the GitLab CI

optionally deploys the OSR components new images to a development namespace as containerized

services for further manual testing.

D3.3 – Open Network App Repository V1.0

 G.A. 101016912 Page 55|85

Figure 22: OSR Development Workflow

5.4.2. Deployment Workflow

Figure 23 depicts the deployment workflow that is executed when the development of a new feature is

completed and a new version of the software application is ready to be released. In this scenario, the

developer creates a new merge request to merge all the changes in the source code of the feature

branch to the master branch of the repository. When the merge request gets approved, GitLab triggers

ArgoCD to update container image tag in the deployed Application object. This causes ArgoCD to

automatically sync the actual deployed service in Kubernetes production namespace (Kubernetes

deployment object) to the new version.

D3.3 – Open Network App Repository V1.0

 G.A. 101016912 Page 56|85

Figure 23: OSR Deployment Workflow

5.5. Testing

For the OSR components testing we have created unit tests to ensure that individual units of the code

keep performing the required functionality successfully after the changes being merged to the code

during the development process. The OSR components are all developed in Python programming

language so the tool we have used to perform the unit tests is “tox”, currently on of the most used test

tool for Python programming. Tox is a generic virtual environment management and test command line

tool, it aims to automate and standardize testing Python and easing the packaging, testing and release

process of Python software. We add tox commands in our GitLab CI pipelines to perform the required

tests. The pipeline can only continue to the next stage if all tox tests have completed successfully.

We can summarize the tox process in the following steps:

• tox generates a series of virtual environments

• it generates dependencies for each environment, as defined in the tox configuration

• it runs the setup commands for each environment

• finally, it returns the results from each environment to the user

In order to assure that the high-level functionality of the OSR backend is provided as described we have

created a series of functional tests. This testing procedure is based on the open-source Robot

Framework tool. Robot Framework has an easy syntax, utilizing human-readable keywords. For out tests

we have mainly used the “HTTP RequestLibrary” which greatly facilitates performing HTTP requests and

compare the returned response with the expected one. Moreover, Robot Framework supports adding a

“teardown” stage at the end of each test to remove any objects or artifacts created during the test

execution.

D3.3 – Open Network App Repository V1.0

 G.A. 101016912 Page 57|85

6. Conclusions and Future Work

This document presented the implementation details of the Open Service Repository and the Platform

User Interface in order to support Network App development in a collaborative environment and storage

within the Smart5Grid framework. It explains interfaces, architectural design, and integration with external

components.

The official development period for the Smart5Grid OSR is completed by the release of this document.

The OSR will be used in the future both for the realisation of the Smart5Grid Use Cases showcasing and

experiments as well as for other activities beyond Smart5Grid project. During the operational phase of

the OSR we will collect and analyse feedback and use it to create a loop of information that will be used

to provide suggestions to improve the performance, functionality and user experience of the OSR. In the

future additional enhancements can be introduced by implementing more drivers for open-source

DevOps tools that can further automate and facilitate the development process of Network Apps and by

providing more interfaces with respect to deploying Network Apps on production infrastructure and

managing their lifecycle.

D3.3 – Open Network App Repository V1.0

 G.A. 101016912 Page 58|85

7. References
[1] Open Container Initiative Distribution Specification

https://github.com/opencontainers/distribution-spec/blob/main/spec.md

[2] Harbor, the trusted cloud native registry for Kubernetes

https://goharbor.io/

[3] Docker Hub

https://hub.docker.com/

[4] RedHat Quay

https://quay.io/

[5] Artifact Hub

https://artifacthub.io/

[6] VMware Bitnami

https://bitnami.com/

[7] Direito, R., Gomes, D., Trantzas, K., & Tranoris, C. (2022, September). 5GASP's approach to the

onboarding, deployment and validation of 5G NetApps. In 2022 IEEE International Mediterranean

Conference on Communications and Networking (MeditCom) (pp. 78-81). IEEE.

[8] EVOLVED-5D Deliverable D2.2 “Design of the NetApps development and evaluation

environments”

[9] 5G-IANA – Deliverable D2.1 Specifications of the 5G-IANA architecture

[10] VITAL-5G Deliverable D1.2 system specifications and architecture

[11] 5G-MediaHUB Deliverable D2.1 Northbound APIs, NetApps and NetApps Repository development

– Initial

[12] The YANG Data Modeling Language RFC

https://www.rfc-editor.org/rfc/rfc7950

[13] Smart5Grid Project (2021), Smart5Grid deliverable D2.2 “Overall Architecture Design, Technical

Specifications and Technology Enablers”

[14] Go Helm Client

https://pkg.go.dev/github.com/mittwald/go-helm-client#section-readme

[15] PYPL PopularitY of Programming Language

https://pypl.github.io/PYPL.html

[16] Keycloak, open source identity and access management solution

https://www.keycloak.org/

[17] Auth0, authentication and authorization platform

https://auth0.com/

[18] AWS IAM Identity Center, centrally managed access to multiple AWS accounts and applications

https://aws.amazon.com/iam/identity-center/

[19] OpenIAM, converged identity platform

https://www.openiam.com/

[20] Django Framework, open-source, Python-based web framework

https://www.djangoproject.com/

https://github.com/opencontainers/distribution-spec/blob/main/spec.md
https://goharbor.io/
https://hub.docker.com/
https://quay.io/
https://artifacthub.io/
https://bitnami.com/
https://www.rfc-editor.org/rfc/rfc7950
https://pkg.go.dev/github.com/mittwald/go-helm-client#section-readme
https://pypl.github.io/PYPL.html
https://www.keycloak.org/
https://auth0.com/
https://aws.amazon.com/iam/identity-center/
https://www.openiam.com/
https://www.djangoproject.com/

D3.3 – Open Network App Repository V1.0

 G.A. 101016912 Page 59|85

[21] SQLite vs MySQL vs PostgreSQL: A Comparison of Relational Database Management Systems

https://www.digitalocean.com/community/tutorials/sqlite-vs-mysql-vs-postgresql-a-comparison-

of-relational-database-management-systems

[22] Elastisearch, distributed, search and analytics engine

https://www.elastic.co/what-is/elasticsearch

[23] Logstash, data processing pipeline

https://www.elastic.co/logstash/

[24] Filebeat, lightweight shipper for logs

https://www.elastic.co/beats/filebeat

[25] Kibana, user interface for Elasticsearch data

https://www.elastic.co/kibana/

[26] OpenID Connect Core 1.0 specification - Section 1.2. Terminology

https://openid.net/specs/openid-connect-core-1_0.html#Terminology

[27] React, a JavaScript library for building user interfaces

https://reactjs.org/

https://www.digitalocean.com/community/tutorials/sqlite-vs-mysql-vs-postgresql-a-comparison-of-relational-database-management-systems
https://www.digitalocean.com/community/tutorials/sqlite-vs-mysql-vs-postgresql-a-comparison-of-relational-database-management-systems
https://www.elastic.co/what-is/elasticsearch
https://www.elastic.co/logstash/
https://www.elastic.co/beats/filebeat
https://www.elastic.co/kibana/
https://openid.net/specs/openid-connect-core-1_0.html%23Terminology
https://reactjs.org/

D3.3 – Open Network App Repository V1.0

 G.A. 101016912 Page 60|85

8. Appendix A: OSR REST API

OSR Authentication and Authorization Interfaces

Get OpenID Connect Access Token

Get an OpenID connect access token bearing the user’s claims.

POST - “/auth/realms/s5g/protocol/openid-connect/token”

Headers:

• Content-Type: application/x-www-form-urlencoded

Attribute Type Required Description

grant_type String Yes OIDC grant type (use “password” for cli

access).

client_id String Yes OIDC client ID.

client_secret String Yes OIDC client secret.

scope String Yes OIDC scope. (default: “openid”)

username String Yes OIDC username.

password String Yes OIDC user password.

Returns:

• 200 OK – On success

Example output:

{
 "access_token":"....ACCESS TOKEN REDACTED.....",
 "expires_in":600,
 "refresh_expires_in":0,

 "token_type":"Bearer",

 "id_token":"....ID TOKEN REDACTED.....",

 "not-before-policy":0,

 "session_state":"####-####-####",

 "scope":"openid profile email"

}

D3.3 – Open Network App Repository V1.0

 G.A. 101016912 Page 61|85

Create User

Creates a user in the A&A Service. This request requires elevated permissions, available only to admin

users and to the Network App Catalogue Service.

POST - “/auth/realms/s5g/protocol/openid-connect/token”

Headers:

• Content-Type: application/x-www-form-urlencoded

• Authorization: Bearer $oidc_access_token

Attribute Type Required Description

firstName String Yes User First Name.

lastName String Yes User Last Name.

email String Yes User email.

enabled String Yes Specifies whether the user will be enabled.

username String Yes User username.

Returns:

• 201 Created – On success

OSR Catalogue Interfaces

User REST API:

Show User Detailed View

Get a specific User’s detailed fields.

GET - “/users/details/”

Headers:

• Content-Type: application/json

• Authorization: Bearer $oidc_access_token

Returns:

• 200 OK – On success

Example output:

D3.3 – Open Network App Repository V1.0

 G.A. 101016912 Page 62|85

{
 "username": "name@mail.com",
 "enabled": true,
 "emailVerified": true,
 "firstName": "John",
 "lastName": "Doe",
 "email": "name@mail.com",
 "keys": [
 {
 "id": 5,
 "title": "demo-ssh-key",
 "created_at": "2022-05-13T01:38:51.676Z",
 "expires_at": null,
 "key": "ssh-rsa ######"
 }
],
 "container_registry_secret": "******",
 "code_versioning_service_activation": "Done",

 "image_registry_activation": "Done"

}

List User Repository Keys

List a specific User’s public ssh keys.

GET - “/users/repokeys/list”

Headers:

• Content-Type: application/json

• Authorization: Bearer $oidc_access_token

Returns:

• 200 OK – On success

Example output:

[
 {
 "id": 5,
 "title": "demo-key1",
 "created_at": "2022-05-13T01:38:51.676Z",
 "expires_at": null,
 "key": "REDACTED"
 },
 {
 "id": 6,
 "title": "demo-key2",
 "created_at": "2022-06-19T02:17:46.292Z",
 "expires_at": null,
 "key": "REDACTED"

D3.3 – Open Network App Repository V1.0

 G.A. 101016912 Page 63|85

 }
]

Create User Repository Key

Add User’s public ssh key, needed for underlying Code Repository Service actions.

POST - “/users/repokeys/create”

Headers:

• Content-Type: application/json

• Authorization: Bearer $oidc_access_token

Attribute Type Required Description

key_title String Yes The title for the

uploaded public SSH

key.

key String Yes Content of the public

SSH key.

Returns:

• 200 OK – On success

Delete User Repository Key

Delete a User’s public ssh key.

DELETE- “/users/repokeys/delete/:id”

Headers:

• Content-Type: application/json

• Authorization: Bearer $oidc_access_token

Attribute Type Required Description

id Integer Yes The ID of the public

SSH key.

Returns:

• 200 OK – On success

D3.3 – Open Network App Repository V1.0

 G.A. 101016912 Page 64|85

Network App REST API:

List Network Apps

Get a list of all visible Network Apps across the OSR for the authenticated user.

GET - “/netapp/list/”

Headers:

• Content-Type: application/json

• Authorization: Bearer $oidc_access_token

Example output:

[

 {

 "id": 1,

 "name": "example-np",

 "description": "Network App description",

 "latest_version": "",

 "public": false,

 "repository_url": "git@repo_url:example-np/example-np.git",

 "user": 1,

 "created_at": "2022-10-25T17:19:35.996474Z",

 "updated_at": "2022-10-25T17:19:35.996528Z",

 }

]

Show Network App Detailed View

Get a specific Network App’s detailed fields.

GET - “/netapp/detail/:id”

Headers:

• Content-Type: application/json

• Authorization: Bearer $oidc_access_token

Attribute Type Required Description

id Integer Yes The id of the NetApp.

Returns:

D3.3 – Open Network App Repository V1.0

 G.A. 101016912 Page 65|85

• 200 OK – On success

• 404 NetApp not found - if the NetApp does not exist or cannot be accessed by the requester.

Example output:

{
 "id": 1,
 "latest_version": "1.0",
 "name": "example-np",
 "description": "",
 "public": false,
 "repo_project_id": 127,
 "repo_group_id": 288,
 "repository_url": "git@repo_url:example-np/example-np.git",
 "identity_group_id": "c6cc7534-2724-43ef-a058-c44be9cbd878",
 "user": 1,
 "created_at": "2022-10-25T17:53:46.055379Z",
 "updated_at": "2022-10-25T17:53:46.055403Z",
 "descriptors": [
 {
 "id": 1,
 "commit": "0e1d0aae24b59013fd16520bd4a43bb142e05ec3",
 "version": "1.0",
 "validated": false,
 "verified": false,
 "created_at": "2022-10-25T18:20:41.748032Z",
 "updated_at": "2022-10-25T18:20:41.748058Z",
 "netapp_tests": [],
 "data_formated": {
 "netapp": [
 {
 "name": "demo_np",
 "description": "A demo network app",
 "provider": "Axon",
 "version": 1,
 "service": {
 "type": "nbc",
 "nsd": [
 {
 "nsd-id-ref": "demo_ns_nsd",
 "vnf-ref": [
 {
 "vnf-id-ref": "demo_vnf_vnfd"
 }
]
 }
]
 }
 }
]
 },
 "data": "REDACTED: same as above but single line with new line

characters"
 }
]

D3.3 – Open Network App Repository V1.0

 G.A. 101016912 Page 66|85

}

Create a Network App

Create a new Network App. Available only for users who can create Network Apps.

POST - “/netapp/create/”

Headers:

• Content-Type: application/json

• Authorization: Bearer $oidc_access_token

Attribute Type Required Description

name String Yes The name of the

Network App.

description String No The description of the

Network App.

public Boolean No Specifies if the new

Network App will be

publicly available or

not. Default value is

“false”.

Returns:

• 200 OK – On success

Example output:

{
 "id": 1,
 "name": "example-np",

 "description": "Network App description text",

 "public": false,

 "name": "example-np",

 "repository_url": "git@repo_url:example-np/example-np.git",

 "created_at": "2012-10-12T17:04:47Z",

 "updated_at": "2012-10-12T17:04:47Z"

}

Update a Network App

D3.3 – Open Network App Repository V1.0

 G.A. 101016912 Page 67|85

Create a new Network App. Available only for users who can update the specified Network App.

PUT - “/netapp/update/:id”

Headers:

• Content-Type: application/json

• Authorization: Bearer $oidc_access_token

Attribute Type Required Description

id Integer Yes The ID of the Network

App.

description String No The description of the

Network App.

public Boolean No Specifies if the new

Network App will be

publicly available or

not. Default value is

“false”.

Returns:

• 200 OK – On success

Example output:

{

 "id": 1,
 "name": "example-np",
 "description": "Network App description text",
 "public": false,
 "name": "example-np",
 "repository_url": "git@repo_url:example-np/example-np.git",
 "created_at": "2012-10-12T17:04:47Z",
 "updated_at": "2012-10-12T17:12:24Z"
}

Delete a Network App

Delete a new Network App. Available only for users who can delete the specified Network App.

D3.3 – Open Network App Repository V1.0

 G.A. 101016912 Page 68|85

DELETE - “/netapp/delete/:id”

Headers:

• Content-Type: application/json

• Authorization: Bearer $oidc_access_token

Attribute Type Required Description

id Integer Yes The ID of the Network

App.

Returns:

• 200 OK – On success

Fork Network App

Create a new Network App being the exact duplicate of the selected Network App. The new Network

App will be owned by the initiator user.

GET - “/netapp/fork/:id”

Headers:

• Content-Type: application/json

• Authorization: Bearer $oidc_access_token

Attribute Type Required Description

id Integer Yes The ID of the Network App.

fork_name String Yes The name of the forked Network App.

Returns:

• 200 OK – On success

Sync Network App from Code Versioning Service

Synchronize the content of the code existing in the related repository in the Code Versioning Service to

the data presented by the OSR Catalogue Service.

D3.3 – Open Network App Repository V1.0

 G.A. 101016912 Page 69|85

GET - “/netapp/sync/:id”

Headers:

• Content-Type: application/json

• Authorization: Bearer $oidc_access_token

Attribute Type Required Description

id Integer Yes The ID of the Network App.

Returns:

• 200 OK – On success

Upload Network App Descriptor

Upload the Network App descriptor files archived and compressed in “tar.gz” format. Available only for

users who can alter the content of the specified Network App.

POST - “/netapp/upload-descriptor/:id”

Headers:

• Content-Type: multipart/form-data

• Authorization: Bearer $oidc_access_token

Attribute Type Required Description

id Integer Yes The ID of the Network App.

descriptor_file File Yes Compressed archive containing Network App

descriptor files in yaml format. It can also

include Network App sub-component descriptor

files (Network Services, VNFs).

Network App descriptor yaml file must contain a

“version” field.

Returns:

• 200 OK – On success

D3.3 – Open Network App Repository V1.0

 G.A. 101016912 Page 70|85

Download Network App Descriptor

Download the Network App descriptor archive file, compressed in “tar.gz” format.

GET - “/netapp/download-descriptor/:id”

Headers:

• Content-Type: application/json

• Authorization: Bearer $oidc_access_token

Attribute Type Required Description

id Integer Yes The ID of the Network App.

version String Yes Network App descriptor version.

Returns:

• 200 OK – On success

Perform V&V test on a Network App

Perform a test via the V&V Platform on a specific version of a Network App. Available only for users who

can alter Network App content.

POST - “/netapp/perform-test/”

Headers:

• Content-Type: application/json

• Authorization: Bearer $oidc_access_token

Attribute Type Required Description

netapp_id Integer Yes The ID of the Network App.

netapp_version String Yes The version of the Network App descriptor.

validate Boolean Yes Request V&V validation test.

verify Boolean Yes Request V&V verification test.

D3.3 – Open Network App Repository V1.0

 G.A. 101016912 Page 71|85

nac_to_use String No Specify the Network App Controller to be used

for the deployment of the Network App

resources for the test. Available choices “osm”

and “nbc”.

Returns:

• 200 OK – On success

Example output:

{
 "id": 1,
 "nac_to_use": "nbc",
 "netAppVersion": "1.0",
 "validate": true,
 "verify": true,
 "vnv_test_id": 89901102,

 "created_at": "2012-10-12T17:04:47Z",
 "updated_at": "2012-10-12T17:12:24Z"

 "netapp_descriptor": 1

}

Get V&V test results

Retrieve the test results from V&V Platform on a requested test.

GET - “/netapp/get-test-results/:id”

Headers:

• Content-Type: application/json

• Authorization: Bearer $oidc_access_token

Attribute Type Required Description

id Integer Yes The ID of the Network App Test.

Returns:

• 200 OK – On success

Example output:

{
 "results": [

D3.3 – Open Network App Repository V1.0

 G.A. 101016912 Page 72|85

 {

 "_id": "63064ed03b513ec068aae027",
 "done": "true",
 "id": pk,
 "netAppId": "test02",
 "netAppVersion": "1.0",
 "results": [
 {
 "date": "2022-09-18T18:55:16.329Z",
 "details": "None",
 "errorCode": "0",
 "errorDescription": "None",
 "failed": "false",
 "netAppId": "test02",
 "netAppVersion": "1.0",
 "type": "verification"
 },
 {
 "date": "2022-09-18T18:55:25.21Z",
 "details": "None",
 "errorCode": "500",
 "errorDescription": "error un-marshaling the Network App

Descriptor: error converting YAML to JSON: yaml: control characters are

not allowed",
 "failed": "true",
 "netAppId": "test02",
 "netAppVersion": "1.0",
 "type": "validation"
 }
],
 "validate": "true",
 "verify": "true"
 }
]
}

Network Service API:

List Network Services

Get a list of all visible Network Services for the authenticated user.

GET - “/ns/list/”

Headers:

• Content-Type: application/json

• Authorization: Bearer $oidc_access_token

D3.3 – Open Network App Repository V1.0

 G.A. 101016912 Page 73|85

Returns:

• 200 OK – On success

Example output:

[

 {

 "id": 1,

 "ns_id": "demo_ns_nsd",

 "public": false,

 "latest_version": "1.0"

 }

]

Show Network Service Detailed View

Get a specific Network Service’s detailed fields.

GET - “/ns/detail/:id”

Headers:

• Content-Type: application/json

• Authorization: Bearer $oidc_access_token

Attribute Type Required Description

id Integer Yes The id of the Network

Service.

Returns:

• 200 OK – On success

• 404 Network Service not found - if the Network Service does not exist or cannot be accessed by

the requester.

Example output:

{
 "id": 1,
 "ns_id": "demo_ns_nsd",
 "public": false,
 "latest_version": "1.0",
 "descriptors": [
 {
 "id": 1,
 "data_formated": {
 "nsd": {
 "nsd": [
 {

D3.3 – Open Network App Repository V1.0

 G.A. 101016912 Page 74|85

 "description": "Network Service k8s for Network App",
 "designer": "Axon",
 "id": "demo_ns_nsd",
 "name": "demo_ns_nsd",
 "version": 1,
 "virtual-link-desc": [
 {
 "id": "ns_virtual_link",
 "mgmt-network": "true",
 "vim-network-name": "mgmtnet"
 }
],
 "vnfd-id": [
 "demo_vnf_vnfd"
]
 }
]
 }
 },
 "data": "REDACTED",
 "commit": "0e1d0aae24b59013fd16520bd4a43bb142e05ec3",
 "version": "1.0",
 "created_at": "2022-10-25T18:20:41.788315Z",
 "updated_at": "2022-10-25T18:20:41.788341Z",
 "ns": 1
 }
]
}

Create a Network Service

Create a new Network Service. Available only for users who can create Network Services.

POST - “/ns/create/”

Headers:

• Content-Type: application/json

• Authorization: Bearer $oidc_access_token

Attribute Type Required Description

name String Yes The name of the

Network Service.

description String No The description of the

Network Service.

D3.3 – Open Network App Repository V1.0

 G.A. 101016912 Page 75|85

public Boolean No Specifies if the new

Network Service will

be publicly available or

not. Default value is

“false”.

Returns:

• 200 OK – On success

Example output:

{
 "id": 1,
 "name": "example-ns",

 "description": "NS description text",

 "public": false,

 "name": "example-ns",

 "created_at": "2012-10-12T17:04:47Z",

 "updated_at": "2012-10-12T17:04:47Z"

}

Update a Network Service

Create a new Network Service.

PUT - “/ns/update/:id”

Headers:

• Content-Type: application/json

• Authorization: Bearer $oidc_access_token

Attribute Type Required Description

id Integer Yes The ID of the Network

Service.

description String No The description of the

Network Service.

public Boolean No Specifies if the new

Network Service will

be publicly available or

not. Default value is

“false”.

D3.3 – Open Network App Repository V1.0

 G.A. 101016912 Page 76|85

Returns:

• 200 OK – On success

Example output:

{
 "id": 1,
 "name": "example-ns",
 "description": "Network Service description text",
 "public": false,
 "name": "example-ns",
 "created_at": "2012-10-12T17:04:47Z",
 "updated_at": "2012-10-12T17:12:24Z"
}

Delete a Network Service

Delete a new Network Service. Available only for users who can delete the specified Network Service.

DELETE - “/ns/delete/:id”

Headers:

• Content-Type: application/json

• Authorization: Bearer $oidc_access_token

Attribute Type Required Description

id Integer Yes The ID of the Network

Service.

Returns:

• 200 OK – On success

Fork Network Service

Create a new Network Service being the exact duplicate of the selected Network Service under a

specified existing Network App. The Network App must be owned by the initiator user.

GET - “/ns/fork/:id”

D3.3 – Open Network App Repository V1.0

 G.A. 101016912 Page 77|85

Headers:

• Content-Type: application/json

• Authorization: Bearer $oidc_access_token

Attribute Type Required Description

id Integer Yes The ID of the Network Service.

netapp_id Integer Yes The ID of the target Network App Service, on

which we want to fork the Network Service.

Returns:

• 200 OK – On success

Virtual Network Function API:

List VNFs

Get a list of all visible VNF s for the authenticated user.

GET - “/vnf/list/”

Headers:

• Content-Type: application/json

• Authorization: Bearer $oidc_access_token

Returns:

• 200 OK – On success

Example output:

[

 {

 "id": 1,

 "vnf_id": "demo_vnf_vnfd",

 "public": false,

 "latest_version": "1.0"

 }

]

Show VNF Detailed View

Get a specific VNF’s detailed fields.

D3.3 – Open Network App Repository V1.0

 G.A. 101016912 Page 78|85

GET - “/vnf/detail/:id”

Headers:

• Content-Type: application/json

• Authorization: Bearer $oidc_access_token

Attribute Type Required Description

id Integer Yes The id of the VNF.

Returns:

• 200 OK – On success

• 404 VNF not found - if the VNF does not exist or cannot be accessed by the requester.

Example output:

{
 "id": 1,
 "vnf_id": "demo_vnf_vnfd",
 "public": false,
 "latest_version": "1.0",
 "descriptors": [
 {
 "id": 1,
 "data_formated": {
 "vnfd": {
 "description": "Virtual Network Function for Network App",
 "ext-cpd": [
 {
 "id": "vnf-connection-point"
 }
],
 "id": "demo_vnf_vnfd",
 "mgmt-cp": "vnf-connection-point",
 "product-name": "demo_vnf_vnfd",
 "provider": "Axon",
 "vdu": [
 {
 "name": "demo_vdu",
 "helm-chart":

"https://registry_url/chartrepo/demo_vdu/demo_vdu:0.1.0"
 }
],
 "version": 1
 }
 },
 "data": "REDACTED",
 "commit": "0e1d0aae24b59013fd16520bd4a43bb142e05ec3",
 "version": "1.0",

D3.3 – Open Network App Repository V1.0

 G.A. 101016912 Page 79|85

 "created_at": "2022-10-25T18:20:41.773368Z",
 "updated_at": "2022-10-25T18:20:41.773391Z",
 "vnf": 1
 }
]
}

Create a VNF

Create a new VNF. Available only for users who can create VNFs.

POST - “/vnf/create/”

Headers:

• Content-Type: application/json

• Authorization: Bearer $oidc_access_token

Attribute Type Required Description

name String Yes The name of the VNF.

description String No The description of the

VNF.

public Boolean No Specifies if the new

VNF will be publicly

available or not.

Default value is “false”.

Returns:

• 200 OK – On success

Example output:

{
 "id": 1,
 "name": "example-vnf",
 "description": "VNF description text",
 "public": false,
 "name": "example-vnf",
 "created_at": "2012-10-12T17:04:47Z",
 "updated_at": "2012-10-12T17:12:24Z"
}

D3.3 – Open Network App Repository V1.0

 G.A. 101016912 Page 80|85

Update a VNF

Create a new VNF.

PUT - “/vnf/update/:id”

Headers:

• Content-Type: application/json

• Authorization: Bearer $oidc_access_token

Attribute Type Required Description

id Integer Yes The ID of the VNF.

description String No The description of the

VNF.

public Boolean No Specifies if the new

VNF will be publicly

available or not.

Default value is “false”.

Returns:

• 200 OK – On success

Example output:

{
 "id": 1,
 "name": "example-vnf",
 "description": "VNF description text",
 "public": false,
 "name": "example-vnf",
 "created_at": "2012-10-12T17:04:47Z",
 "updated_at": "2012-10-12T17:12:24Z"
}

Delete a VNF

Delete a new VNF. Available only for users who can delete the specified VNF.

DELETE - “/vnf/delete/:id”

D3.3 – Open Network App Repository V1.0

 G.A. 101016912 Page 81|85

Headers:

• Content-Type: application/json

• Authorization: Bearer $oidc_access_token

Attribute Type Required Description

id Integer Yes The ID of the VNF.

Returns:

• 200 OK – On success

Fork VNF

Create a new VNF being the exact duplicate of the selected VNF under a specified existing Network App.

The Network App must be owned by the initiator user.

GET - “/vnf/fork/:id”

Headers:

• Content-Type: application/json

• Authorization: Bearer $oidc_access_token

Attribute Type Required Description

id Integer Yes The ID of the VNF.

netapp_id Integer Yes The ID of the target Network App Service, on

which we want to fork the VNF.

Returns:

• 200 OK – On success

Virtual Deployment Unit API:

List VDUs

Get a list of all visible VDUs s for the authenticated user.

D3.3 – Open Network App Repository V1.0

 G.A. 101016912 Page 82|85

GET - “/vdu/list/”

Headers:

• Content-Type: application/json

• Authorization: Bearer $oidc_access_token

Returns:

• 200 OK – On success

Example output:

[

 {

 "id": 3,

 "registry_url": "https://c-registry.s5g.gos.y-

cloud.eu/harbor/projects/85/repositories",

 "name": "demo-vdu",

 "description": "a test vdu",

 "public": false,

 "image_type": "helm",

 "repository_url": "git@repo_url:demo-vdu/demo-vdu.git",

 "identity_group_id": "6f7c9d4b-db0b-4f91-b650-007c585822ee",

 "user": 1

 }

]

Show VDU Detailed View

Get a specific VDU’s detailed fields.

GET - “/vdu/detail/:id”

Headers:

• Content-Type: application/json

• Authorization: Bearer $oidc_access_token

Attribute Type Required Description

id Integer Yes The id of the VDU.

Returns:

• 200 OK – On success

• 404 VDU not found - if the VDU does not exist or cannot be accessed by the requester.

D3.3 – Open Network App Repository V1.0

 G.A. 101016912 Page 83|85

Example output:

{

 "id": 3,

 "registry_url": "https://c-registry.s5g.gos.y-

cloud.eu/harbor/projects/85/repositories",

 "name": "demo-vdu",

 "description": "a test vdu",

 "public": false,

 "image_type": "helm",

 "repository_url": "git@repo_url:demo-vdu/demo-vdu.git",

 "identity_group_id": "6f7c9d4b-db0b-4f91-b650-007c585822ee",

 "user": 1

}

Create a VDU

Create a new VDU. Available only for users who can create VDUs.

POST - “/vdu/create/”

Headers:

• Content-Type: application/json

• Authorization: Bearer $oidc_access_token

Attribute Type Required Description

name String Yes The name of the VDU.

description String No The description of the

VDU.

public Boolean No Specifies if the new

VDU will be publicly

available or not.

Default value is “false”.

image_type String Yes Image type can be

either “docker” or

“helm”.

Returns:

• 200 OK – On success

Example output:

D3.3 – Open Network App Repository V1.0

 G.A. 101016912 Page 84|85

{
 "id": 1,
 "name": "example-vdu",
 "description": "VDU description text",
 "public": false,
 "name": "example-vdu",
 "created_at": "2012-10-12T17:04:47Z",
 "updated_at": "2012-10-12T17:12:24Z",
 "registry_url": "https://registry_url/harbor/projects/86/repositories",
 "repository_url": "git@repo_url:example-vdu/example-vdu.git",
}

Update a VDU

Create a new VDU.

PUT - “/vdu/update/:id”

Headers:

• Content-Type: application/json

• Authorization: Bearer $oidc_access_token

Attribute Type Required Description

id Integer Yes The ID of the VDU.

description String No The description of the

VDU.

public Boolean No Specifies if the new

VDU will be publicly

available or not.

Default value is “false”.

Returns:

• 200 OK – On success

Example output:

{
 "id": 1,
 "name": "example-vdu",
 "description": "VDU description text",
 "public": false,
 "name": "example-vdu",

D3.3 – Open Network App Repository V1.0

 G.A. 101016912 Page 85|85

 "created_at": "2022-10-12T17:04:47Z",
 "updated_at": "2022-10-12T17:12:24Z",
 "registry_url": "https://registry_url/harbor/projects/86/repositories",
 "repository_url": "git@repo_url:example-vdu/example-vdu.git",
}

Delete a VDU

Delete a new VDU. Available only for users who can delete the specified VDU.

DELETE - “/vdu/delete/:id”

Headers:

• Content-Type: application/json

• Authorization: Bearer $oidc_access_token

Attribute Type Required Description

id Integer Yes The ID of the VDU.

Returns:

• 200 OK – On success

